
Technical Report

Optimization of the deflated Conjugate Gradient algorithm for the

solving of elliptic equations on massively parallel machines

Mathias Malandain* and Nicolas Maheu and Vincent Moureau
Corresponding author: mathias.malandain@coria.fr

October 1, 2012

Contents

Abstract 2

1 Introduction 3
1.1 State-of-the-art and motivation . 3
1.2 Notations and definitions . 4
1.3 Principles and practices of the Conjugate Gradient method 4
1.4 Deflation of CG: the A-DEF2 algorithm . 5
1.5 Massively parallel implementation of A-DEF2 . 6

2 Improved initial guesses for the DPCG method 8
2.1 Principle and motivation . 8
2.2 Basic algorithm for the computation of an initial guess 8
2.3 Computation of the initial guess from the previous solutions dk 10
2.4 Implementational choices . 10

3 Adaptation of the convergence criterion on the coarse grid 12
3.1 Principle . 12
3.2 Development . 12
3.3 Choice of CN . 13

4 Massively parallel solving 15
4.1 Double Domain Decomposition technique . 15
4.2 Choice of parameters for massively parallel uses . 16

5 Numerical results 18
5.1 Studied configurations . 18
5.2 Effect of the computation of initial guesses on the number of iterations 23
5.3 Effect of the adaptation of the convergence criterion on the number of iterations 24
5.4 Effect of the combined techniques on the numbers of iterations 25
5.5 Effect on computational and communication times . 28
5.6 Effect on the weak scaling . 29
5.7 Effect on the extreme scaling . 30

6 Summary 32

1

Abstract

The discretization of Partial Differential Equations often leads to the need of solving large symmetric
linear systems. In the case of the Navier-Stokes equations for incompressible flows, solving the elliptic
pressure Poisson equation can represent the most important part of the computational time required
for the massively parallel simulation of the flow. The need for efficiency that this issue induces is
completed with a need for stability, in particular when dealing with unstructured meshes. Here, a
stable and efficient variant of the Deflated Preconditioned Conjugate Gradient (DPCG) solver is first
presented. This two-level method uses an arbitrary coarse grid to reduce the computational cost of
the solving. However, in the massively parallel implementation of this technique for very large linear
systems, the coarse grids generated can count up to millions of cells, which makes direct solvings on the
coarse level impossible. The solving on the coarse grid, performed with a Preconditioned Conjugate
Gradient (PCG) solver for this reason, may involve a large number of communications, which reduces
dramatically the performances on massively parallel machines. To this effect, two methods developed
in order to reduce the number of iterations on the coarse level are introduced, that is the creation of
improved initial guesses and the adaptation of the convergence criterion. The design of these methods
make them easy to implement in any already existing DPCG solver. The structural requirements for
an efficient massively parallel unstructured solver and the implementation of this solver are described.
The novel DPCG method is assessed for a wide range of applications through different 2D and 3D test
cases involving turbulence, heat transfers and two-phase flows, with grids ranging from 3.2 million to
17.8 billion elements. Numerical results show a two- to twelve-fold reduction of the number of iterations
on the coarse level, which implies a reduction of the computational time of the Poisson solver up to
71 % and a global reduction of the proportion of communication times up to 53 %. As a result, the
weak scaling of the LES solver is shown to be clearly improved for massively parallel uses.

2

Chapter 1

Introduction

1.1 State-of-the-art and motivation

According to J. R. Shewchuk [37], the Conjugate Directions method was introduced by E. Schmidt
in 1908 [36], and then independently reinvented by Fox et al. in 1948 [11]. A few years later, M.
R. Hestenes and E. Stiefel created the Conjugate Gradient method [15, 39], then published in 1952 a
joint article considered a seminal reference on CG [16]. Popularized by J. K. Reid [32] as a method
for solving large sparse linear systems, it has also been generalized for nonlinear systems in the Sixties
[10], and the investigation of the solving of non-symmetric linear systems thanks to methods derived
from CG has been carried out from the mid-Seventies, with the BiCG method [9] and variants such as
BiCG-STAB and BiCGStab(L) [43, 38].

The idea of preconditioning the CG method dates back to the late Fifties, that is very few years
after its creation, with for instance the work of M. Engell et al. [5], but the deflation technique came
up three decades later, in 1987, thanks to R.A. Nicolaides [29]. This method has since been developed
and frequently applied, among others, to linear systems arising from the discretization of Navier-Stokes
equations: see for instance [35] about the creation of a Deflated CG method; [12, 42] about the domain-
decomposition deflation method; [1, 27] for applications to physical problems. Several comparisons have
been made between solvers [28, 21], from which it appears that the DPCG is among the most stable and
efficient numerical methods for symmetric systems; moreover, its easy implementation for massively
parallel solving on unstructured meshes is a considerable asset. Nevertheless, several stability issues
may occur when the method is used for the simulation of fluid flows in complex geometries. These
issues may be of particular importance when dealing with Poisson equations in two-phase flows, that
feature variable coefficient matrices with strong variations in its diagonal.

In an article written in 2009 by Tang et al. [40], the A-DEF2 variant of the Deflated CG is created
that is proved fast and robust, even when compared to domain decomposition and multigrid methods,
which is why this method is studied here. Some improvements were still to be used: as a matter of
fact, reducing the high number of iterations required on the coarse level can become very important,
as these iterations will add irreducible communication times to the overall time spent in the solver.

Two novel methods are introduced here, one of them consisting in the computation of improved
initial guesses, the other one being an adaptation of the convergence criterion on the coarse grid at every
iteration of the solver on the fine grid. For assessment purposes, they have been implemented in the
A-DEF2 solver used for the pressure Poisson equation in an unstructured LES solver for incompressible
flows. The novel solver created thereby has been tested for different settings, from two-dimensional
test cases to real turbulent flow configurations.

This paper is organized as follows. After a quick introduction on the PCG method, the DPCG
method and its variant A-DEF2, the creation of initial guesses for the successive systems on the coarse
grid based on the former computed solutions is discussed in Chapter 2, and Chapter 3 addresses the

3

possibility of adjusting the convergence criterion on the coarse grid. Then, Chapter 4 presents the
massively parallel implementation of these techniques, thanks to which the numerical results shown in
Chapter 5 have been obtained on grids up to billions of cells. Finally, Chapter 6 concludes this report
by summing up the developed methods and the resulting gains on computational times.

1.2 Notations and definitions

In what follows, a linear system Ax = b is considered that has to be solved, with A ∈ Rn×n, x ∈ Rn,
b ∈ Rn. It is assumed that A is positive semi-definite, that is ∀x ∈ Rn, xTAx ≥ 0.

The A-dot product is defined as the binary operation 〈·, ·〉A such that

∀x, y ∈ Rn, 〈x, y〉A = xTAy . (1.1)

Two vectors x and y are then A-orthogonal if and only if 〈x, y〉A = 0.
One can derive a norm ‖ · ‖A from this dot product, thus creating the A-norm or energy norm

∀x ∈ Rn, ‖x‖A =
√
xTAx . (1.2)

Finally, the standard infinite norm is defined as

∀x ∈ Rn, ‖x‖∞ = max
k∈{1;...;n}

|xk| . (1.3)

1.3 Principles and practices of the Conjugate Gradient method

As for every iterative method for the solving of linear systems, the Conjugate Gradient (CG) method
consists on a particular way of creating a series of values {xk}k∈N that converges to x = A−1b. The
following notes are strongly inspired by [37].

At iteration k, the algorithm computes a direction pk in which the residual rk will be decreased,
and a given multiplier αk+1 for pk; then

xk+1 = xk + αk+1pk . (1.4)

The new error ek+1 = x − xk+1 has to be A-orthogonal to pk; one will therefore be able to build
an A-orthogonal basis {p1; p2; . . . ; pn} of Rn.

The choice of pk is quite simple, as it is the result of the A-orthogonalization of rk with respect to
the previous directions p1, p2, . . . , pk−1. It is quite easy to prove that rk is already orthogonal to pi for
i ∈ {1; 2; . . . ; k− 2}, so that it is only necessary to find the coefficient βk such that pk = rk + βkpk−1 is
A-orthogonal to pk−1. Then, as ek+1 = ek − αk+1pk, the A-orthogonality condition and the fact that
Aek = rk induce

αk+1 =
pTk rk

pTkApk
and βk =

rTk rk

rTk−1rk−1
. (1.5)

Using a preconditioning matrix K−1, the solving of Ax = b becomes equivalent to the solving of
K−1Ax = K−1b, thus creating the PCG method [44] given by Algorithm 1.

4

Algorithm 1 Preconditioned Conjugate Gradient algorithm

Require: A, b, x0
p0 = r0 = b−Ax0
w0 = K−1r0
for k = 0, 1, 2 . . . until required convergence do

αk+1 =
rTk wk

pTk Apk
xk+1 = xk + αk+1pk
rk+1 = rk − αk+1Apk
wk+1 = K−1rk+1

βk+1 =
rTk+1wk+1

rTk wk

pk+1 = wk+1 + βk+1pk
end for

1.4 Deflation of CG: the A-DEF2 algorithm

Numerous variants of preconditioned, deflated and balancing algorithms have been introduced and
compared by Tang et al. in [40], built thanks to strict combinations of the preconditioners correspond-
ing to each method. The A-DEF2 variant of the DPCG, a novel combination of the deflation and
preconditioning techniques, has been chosen here due to its stability and performance, shown in the
aforementioned article. It is applied here by combining a standard geometrical deflation with non-
overlapping projection vectors, as introduced by Vermolen et al. in [42], and a preconditioning by the
inverse of the diagonal. These choices are practical, as they reduce the computational time required for
initializing the solver. The A-DEF2 algorithm being implemented is described by Algorithm 2, with
W the deflation matrix and M = diag(A). In what follows, the right-hand side of the solver on the
coarse grid W T (AM−1 − I)ri is called bCi .

Algorithm 2 The A-DEF2 algorithm, to solve Ax = b using the preconditioner M−1 and the deflation
matrix W
Require: A, b,M−1,W
Â←W TAW
Solve Âd−1 = W T b
x0 = Wd−1
r0 = b−Ax0
Solve Âd0 = W T (AM−1 − I)r0
w0 = M−1r0 −Wd0
p0 = w0

for k = 0, 1 . . . until required convergence do

αk+1 =
rTk wk

pTk Apk
xk+1 = xk + αk+1pk
rk+1 = rk − αk+1Apk
Solve Âdk+1 = W T (AM−1 − I)rk+1

wk+1 = M−1rk+1 −Wdk+1

βk+1 =
rTk+1wk+1

rTk wk

pk+1 = wk+1 + βk+1pk
end for

The coarse grid is created by conglomeration of control volumes from the fine grid, such that all

5

groups contain approximatively the same number of control volumes, and each group is located on
a single processor during parallel solving; the creation of these groups of control volumes is detailed
in Chapter 4. Thus, the deflation matrix W counts as many columns as there are groups of control
volumes in the grid, and as non-overlapping deflation vectors are created, each of these columns is
actually the indicator vector of a group.

The stopping condition is reached when

‖rk‖∞ ≤ γ ‖b‖∞ , (1.6)

and γ is hereafter called the convergence criterion of the solver on the fine grid. The convergence
criterion on the coarse grid usually takes the same value.

1.5 Massively parallel implementation of A-DEF2

The issues that may arise for massively parallel solvings are not addressed by Tang et al., who just
mention that the linear systems on the coarse grid are usually solved directly, thanks to a Cholesky
decomposition for instance. As the typical number of control volumes per group is between a hundred
and a few thousands, the single-processor solving of a linear system on the coarse grid is out of reach
for grids counting up to billions of cells, as the corresponding coarse grid can still contain tens or
hundreds of millions of groups. For this reason, a PCG solver has to be implemented on the coarse
level, which makes a new bottleneck arise.

Although the solving on the coarse grid may not seem very time-consuming, it is in fact an im-
portant part of the computational effort for massively parallel solvings, especially because of the extra
communications that are needed between the processors; as a matter of fact, pieces of data have to
be communicated for every calculation of a dot-product and every evaluation of the residual, so that,
even after a clever rearrangement of the algorithm inspired by [2], at least one MPI communication
is needed at every iteration on the coarse grid. When the solver deals with large realistic simula-
tions, computational times are still lower than without deflation, because of the important reduction
of the number of iterations of the fine grid solving; nevertheless, it seems that going on reducing the
computational times requires to focus on these successive systems on the coarse grid.

As an example, one can run the so-called 3D Cylinder test case described in Section 5.1 with or
without the deflation technique. The Preconditioned CG and the A-DEF2 variant of the DPCG, given
by Algorithms 1 and 2 in the present report, have performed the first time steps of the simulation of the
isothermal flow in this configuration, on a mesh counting 3.9 million cells, with a required convergence
criterion of 10−10 on each level. These runs, and every other run studied in this report, have been
run with the unstructured LES solver YALES2 developed by Vincent Moureau and coworkers at the
CORIA laboratory [25]. A qualitatively representative illustration of the behaviour of both solvers
on this case is given by the results on one particular temporal step, so that the results given in what
follows focus on the fifth temporal step.

• Without the deflation technique, communications are responsible for 6.57 % of the global com-
putational time, 81.57 % of which is spent in the PCG solver for the pressure Poisson equation.

• With the deflation technique, communications are responsible for 8.22 % of the global compu-
tational time, that is 1.25 times as much as in the first case, even though the Pressure solving
is quite twice as fast, that is only 54.45 % of the computational time. The global computa-
tional time for this iteration, and all the other ones, is still divided by a factor about 2.5, as the
thirteen-fold reduction of the number of iterations on the fine grid, from 726 to 54, more than
compensates the much higher cost of communications of the pressure Poisson solver, but this
communication cost appears as a bottleneck for the parallel simulation of turbulent flows.

6

From these results, it becomes obvious that the improvement of a DPCG solver built for massively
parallel uses has to focus on the number of iterations of the PCG solver on the coarse grid. With
this goal in mind, the ideas of creating initial guesses on the coarse grid (Chapter 2) and adapting
the convergence criterion of every linear system on the coarse level (Chapter 3) are expected to reduce
the number of iterations on the coarse grid ”from both sides”, as illustrated by Figure 1.1. Even
though the CG method is not a smoother in the strict sense, because some components of the solution
vector can actually be increased from an iteration to the following one, one can legitimately expect
a quite regular decrease in the order of magnitude of the residual; when applying both techniques
simultaneously, the number of orders of magnitude by which the residual is required to drop should be
consequently decreased, so that one can expect the number of iterations to decrease in a similar way.

{ {

Reduction of the residual

Computation of
the initial guess

Adaptation of the
convergence criterion

Remaining
iterations

{0|| ||r IG
0|| ||r γγ

i

Figure 1.1: Schematic representation of the expected combined effects of the initial guesses and conver-
gence criterion adaptation techniques: the former aims at replacing the first residual r0 with a residual
rIG0 whose norm is strictly inferior, and the latter raises the default convergence criterion γ, whose
value comes from the convergence criterion on the fine grid, to a value γi depending on the behaviour
of the solver. The quasi-logarithmic decrease of the norm of the residual by the CG method will still be
observed, but it will have to be decreased by fewer orders of magnitude, so that less iterations will be
required.

7

Chapter 2

Improved initial guesses for the DPCG
method

2.1 Principle and motivation

The motivation behind this work being explained, the means of improving the convergence of the coarse
grid solver are quite limited. The coarse grid has been made by conglomeration of control volumes
from the fine grid once and for all, in a seemingly optimal way, by external tools detailed in Chapter 4.
Moreover, the numerical method chosen on the coarse level, that is the Conjugate Gradient method,
is the most efficient in parallel for the typical sizes of the projected problem. An alternative way of
adapting the convergence criterion on the coarse grid, but still keeping it low enough to keep a good
overall convergence, is addressed in Chapter 3; however, once the sought precision on the coarse grid
is set, the initial guess of the system to be solved seems to be the most important choice left in order
to reduce the number of iterations of the successive linear systems on the coarse grid.

A recycling technique has already been developed by Paul F. Fischer in [8], that was not only
reused several times for linear systems with multiple right-hand sides [23], but also generalized to the
case where there are also slight changes in the matrix of the system [30] and applied to a variety of
scientific fields, from medical imaging [3] to model order reduction [7].

The main change here is that the method introduced hereafter does not require the preliminary
normalization of the vectors used for the computation of the initial guess; it is not even needed to check
the linear independence of these vectors, and the important computational errors happening when the
vectors are numerically close to linearly dependent are avoided, as detailed in Section 2.4.

Two advantages are induced by this particular method. First, the costs of the computation of
the initial guesses are reduced: as a matter of fact, the orthogonalization step is no longer required,
which drops the number of Â-products and communications needed, and the major part of the values
computed for the creation of an initial guess are used again for the next one (see Section 2.4). Second,
this direct algorithm avoids the propagation and amplification of rounding errors, and therefore the
optimality of the initial guess for the given parameters is guaranteed.

2.2 Basic algorithm for the computation of an initial guess

The general idea is creating an initial guess thanks to nig given vectors. The initial guess for the
solving of the system Âdi = bCi on the coarse level can then be written as

∑nig

j=1 ν
i
ju

i
j , with {uij}

nig
j=1 an

independent family of vectors, and ∀j ∈ {1, . . . , nig} , νij 6= 0 if the vectors are linearly independent.

As di =
∑nig

j=1 ν
i
ju

i
j + d̃i, it becomes obvious that the coefficients νij have to be chosen such that d̃i is

orthogonal to all vectors uij for j ranging from 1 to nig.

8

In other words, d̃i can be obtained by orthogonalizing di with respect to the set {uij}
nig
j=1; and as the

entire CG algorithm, that is used on both levels, is built on dot products defined thanks to the matrix
of the system to be solved, the projected systems will be solved by an algorithm that uses properties
derived from the Â-dot product. Therefore, the coefficients νij have to be chosen such that

∀j ∈ {1; . . . ;nig}, 〈di −
nig∑
k=1

νiku
i
k, u

i
j〉Â = 0 , (2.1)

that is

∀j ∈ {1; . . . ;nig},
nig∑
k=1

νik(uik)T Âuij = (uij)
T Âdi = (uij)

T bCi . (2.2)

This can be written as the linear system Ciνi = si with

Ci =
(

(uij)
T Âuik

)nig

j,k=1
; νi =

(
νij
)nig

j=1
; si =

(
(uij)

T bCi
)nig

j=1
, (2.3)

which is the general form of the linear system solved by YALES2 for the computation of the initial
guesses. In order to avoid a high number of distinct communications, all the dot products required
for the computation of an initial guess are computed at once, and their values are distributed to all
processors, so that every processor can solve the system Ciνi = si independently.

An equivalent way of obtaining this system is by choosing to minimize the square of the Â-distance
between the initial guess

∑nig

j=1 ν
i
ju

i
j and the solution di to the linear system Âdi = bCi , that is

∥∥∥d̃i∥∥∥2
Â

=

di − nig∑
j=1

νiju
i
j

T

Â

di − nig∑
j=1

νiju
i
j

= dTi Âdi − 2

nig∑
j=1

νij

(
(uij)

T Âdi

)
+

nig∑
j=1

nig∑
k=1

νijν
i
k

(
(uij)

T Âuik

) (2.4)

from the definition of the Â-norm given in Equation (1.2). A set of values
{
νij

}nig

j=1
that minimises∥∥∥d̃i∥∥∥

Â
is such that

∀j ∈ {1; . . . ;nig},
∂
∥∥∥d̃i∥∥∥

Â

∂νij
= 0 , (2.5)

that is, from the direct derivation of Equation (2.4),

∀j ∈ {1; . . . ;nig},−2(uij)
T Âdi + 2

nig∑
k=1

νik

(
(uij)

T Âuik

)
= 0 . (2.6)

These equations result in the linear system given by Equation (2.3).
If one wants the time of the solving of this system to keep reasonable with respect to the time

required to solve Âdi = bCi , nig will have to be very small towards the size of the matrix Â. Whatever
solver is chosen for this system, the time required for this computation will anyway be negligible
towards the global computation time, and one can expect that the solving time gained thanks to the
initial guess will be much greater than the time required to compute it.

9

2.3 Computation of the initial guess from the previous solutions dk

One can guess that the solutions given by the successive systems on the coarse grid may be quite
similar to each other in direction, or at least that the solution di+1 of the system Âdi+1 = bCi+1 will not

be Â-orthogonal to the solution di of Âdi = bCi ; that is, di+1 can be written as νidi + d̃i+1, with d̃i+1

Â-orthogonal to di and νi 6= 0. Pushing this idea further results in using the set of vectors {di−j}nig
j=1

for the computation of the initial guess of di.
Until iteration nig − 1 on the fine grid, that is until the (nig)-th call of the solver on the coarse

grid, less than nig former solutions are available; there are only i + 1 vectors dk already computed,
with k ranging from −1 to i− 1. The number of vectors used for the construction of the initial guess
of iteration i is therefore

nvect = min{i+ 1, nig} . (2.7)

The matrices used then become

Ci =
(
(uij)

T bCk
)nvect

j,k=1
; νi =

(
νij
)nvect

j=1
; si =

(
(uij)

T bCi
)nvect

j=1
(2.8)

where

∀j ∈ {1; . . . ;nvect} , uij = di+j−nvect−1 . (2.9)

Equation (2.9) is merely a formalization of the fact that the vectors dk are used with k ranging
from −1 to i− 1 if i < nig − 1, and from i− nig to i− 1 if i ≥ nig − 1.

A matrix U i containing nig vectors is created as

U i =
(
uij
)nig

j=1
(2.10)

where, if i < nig − 1, that is nvect < nig, the vectors uij with j > nvect are left equal to 0.
The way this computation of initial guesses is implemented strongly takes advantage of the fact

that most coefficients in matrix Ci are used again in Ci+1, actually all of them as long as nvect < nig
and all but one after that.

2.4 Implementational choices

From the first equation in (2.3), matrix Ci is obviously symmetric, and as already mentioned, the
system Ciνi = si is very small compared to the linear system the solver is conceived for, so that a
direct method can be chosen.

However, the practical implementation of this kind of solver may lead to important issues when
the number of vectors becomes quite large and/or if some of the vectors dk become numerically close
to linearly dependent: in these cases, matrix Ci can become close to singular, so that a direct solving
may become impossible, or very sensitive to perturbations, with a given machine precision. This is
why a QR decomposition using a modified Gram-Schmidt process has been chosen here.

A minimum norm is defined under which a vector is considered null, computed as a function of the
norm of Ci. Then, at every step of the Gram-Schmidt process, if the norm of a computed vector is
below the minimum norm, it is set to zero; else, the normalization of the vector is performed normally.
This method can be seen as a particular way of dismissing the vectors dk that would have caused
important numerical errors in a direct solver, but it is also a way of turning a singular problem into a
regular one ”on the fly”, by substracting its degrees of freedom during its solving. All the solutions of
this system, in which vectors are not linearly independent, would result in the exact same initial guess
for the system Âdi = bCi , so that one only wants to ensure that one of them will be found.

10

It can also be noticed here that, when using this algorithm in parallel, one extra communication
is needed for each iteration of the solver on the coarse grid, in order to compute the sum of the local
contributions to the dot-products that appear in the terms of Ci and si of Equation (2.8). That
being said, the communication costs, as well as the computed ones, are still way lower than those of a
Fischer-like projection technique, that would start with a costly orthonormalization step.

The effectiveness of several values of nig for different test cases is assessed in Section 5.2.

11

Chapter 3

Adaptation of the convergence criterion
on the coarse grid

3.1 Principle

The idea of increasing the convergence criterion of the PCG on the coarse grid arises among others
from multigrid methods, where only a few iterations on the coarse grid(s) are usually performed or a
quite low error reduction is required [41], instead of reaching a comparable precision as the one sought
on the fine grid. The application of a similar method to a deflated solver could be very efficient, as
most time spent on the coarse level is incompressible communication time, and as, once again, the
successive solvings on this level often account for a major part of the global solving time.

However, fixing a limited number of iterations on the coarse grid may not be appropriate. The
first calls for the coarse grid solver have a very important contribution in the definition of the search
directions, and they need tens to hundreds of iterations in order to reach the precision usually sought,
so that fixing a maximum number of iterations for them will deteriorate the very first steps of descent.
On the other side, the solving on the coarse grid takes less iterations as the convergence on the fine
grid is approached, so that a fixed number of iterations on the coarse level could end up being a waste
of time.

This is where the need of an adaptive convergence criterion arises, that would not be based on
empirical results but on a study of the impact of coarse-grid approximations on the fine grid solver.

3.2 Development

Since a PCG solver is used on the coarse grid, the solving of Âdi = bCi is made by modifying iteratively
the value of an estimate d∗i of di, in such a way that a given norm of the residual r∗i = bCi − Âd∗i ,
that would be equal to 0 if the exact solution was reached, decreases over the iterations. The stopping
condition for this iterative solver is

‖r∗i ‖∞ < γi , (3.1)

where γi is usually a constant value, often set to the value γ of the convergence criterion on the
fine grid. When a value of d∗i meeting this condition has been reached, one can write the solution di
as the sum of this value and an absolute error ∆di = di− d∗i . By following the next steps of the solver
on the fine grid, one may study the impact of ∆di on the fine grid computations, and then be able to
impose a different value of γi for each projected system such that a certain deviation criterion is met.

The initial idea behind this work was to study the impact of the approximation of pi on the research
for the next descent direction by following the steps of Algorithm 2, until being able to write explicitly

12

the direction p∗i as a sum of the expected exact direction pi and a computational ”error” ∆pi; requiring
for a given norm of ∆pi to be negligible compared to the norm of pi would then have given a maximum
value of γi. However, as this particular development results in a value of ∆pi whose infinite norm is
very hard to estimate as a function of γi, a simpler criterion has been developed by focusing only on wi,
that one may call the descent basis, as the descent direction pi is obtained from the Â-orthogonalization
of wi towards pi−1.

One can consider that all the computations before the solving of Âdi = bCi are in exact arithmetics,
which is only a practical assumption. The solving of this system leads to the approximation d∗i of di,
and instead of wi = M−1ri −Wdi is computed w∗i = M−1ri −Wd∗i . The approximation error on wi

is then

∆wi = w∗i − wi = W (di − d∗i) = W∆di , (3.2)

which implies ri = Â (di − d∗i) = W TA∆wi. As wi = M−1ri −Wdi, one can write

W TAwi = W TAM−1ri − Âdi = W TAM−1ri − bCi . (3.3)

If one wants
∥∥W TA∆wi

∥∥
∞ to be negligible compared to

∥∥W TAwi

∥∥
∞, which would mean that the

deviation on W TAwi would be negligible in the sense of the infinite norm, the resulting condition is
very difficult to meet, as the infinite norm of W T ri tends to be very small. Nevertheless, one can
instead require that W TA∆wi should be negligible compared to each separate term of the expression
of W TAwi obtained in Equation (3.3), that is{∥∥W TA∆wi

∥∥
∞ ≤ CN

∥∥W TAM−1ri
∥∥
∞∥∥W TA∆wi

∥∥
∞ ≤ CN

∥∥bCi ∥∥∞ , (3.4)

and this condition can finally be written under the form

γi ≤ CN min
(∥∥W TAM−1ri

∥∥
∞ ,
∥∥bCi ∥∥∞) . (3.5)

In practice, very low values are avoided by choosing to bring back γi to the convergence criterion
on the fine grid γ if the value computed from Equation (3.5) is lower, so that the effective computation
is

γi = max
[
γ,CN min

(∥∥W TAM−1ri
∥∥
∞ ,
∥∥bCi ∥∥∞)] . (3.6)

3.3 Choice of CN

For the automatic use of the convergence criterion adaptation technique, effective values of the con-
vergence criterion CN must be known and, more importantly, whether or not CN should have similar
values for different configurations, number of cells in the mesh, and so on, must be determined. A
series of tests have therefore been performed on different test-cases with various mesh and group sizes.

The very definition of the negligibility constant CN can make one expect that its most effective
values should range somewhere between 10−4 and 10−2. Practical experiences confirm this intuitive
result: on one hand, values below this interval do not change the global behaviour of the solver on
the coarse grid; on the other hand, values above this interval make the solver on the coarse grid
compute very imprecise solutions, thus raising the number of iterations required on the fine grid and
deteriorating the global quality of the solver.

An extremal case for the first effect is CN = 0, which results from Equation (3.6) in the choice of
the default value γ, that is the convergence criterion on the fine grid, for every system on the coarse
grid. The second effect is obtained by raising CN to a value that the initial residual on the coarse grid

13

will never reach: the greatest possible value for a real number with the computational precision would
make it, but values way lower than this would also do the trick; in this particular case, and without
any computation of initial guesses on the coarse grid, the solver turns back to a classical PCG. In
practical cases, values of CN ranging from 0.001 to 0.01 seem of particular efficiency, which is shown
in Sections 5.3 and 5.4.

The combination of this technique with the computation of initial guesses on the coarse level,
described in Chapter 2, creates a variant of the A-DEF2 solver, the efficiency of which depends on the
choice of CN and nig. This novel solver, aiming at reducing the number of iterations of the PCG solver
on the coarse grid, is called RA-DEF2(nig,CN) in what follows. Its efficiency, in terms of numbers of
iterations on the coarse grid, global computational times and proportion of communication over the
computation times, is detailed in Chapter 5.

14

Chapter 4

Massively parallel solving

The primary objective of this study was the solving of linear systems arising from the high-precision
simulation of incompressible flows, that is on meshes ranging from a few million to several billions of
cells, as it is quite obvious that numerical methods such as the DPCG method aim at solving very large
linear systems. An important effort is therefore required for the parallelization of the code, especially
regarding the data structures and storage, and one has to choose carefully the parameters used for
a given computation on a given supercomputer. The Double Domain Decomposition method used
in the YALES2 solver is introduced in this chapter, followed by a short chapter about the choice of
parameters for massively parallel solvings.

4.1 Double Domain Decomposition technique

The standard Single Domain Decomposition (SDD) consists of a simple splitting of the domain into
a number of subdomains equal to the number of processors used for the computation, as illustrated
by Figure 4.1. The variables on the subdomain are stored in the local memory, and communication
protocols have to be implemented for the exchange of values at the frontiers between subdomains.
Although this is the simplest way of decomposing a grid for parallel solving, it holds several drawbacks
for massively parallel solving, especially regarding the issues of load balancing and local mesh refine-
ment. Each of them requires an important computational time, as every modification occurring on a
subdomain will lead to a complete reconstruction of the grid on this subdomain.

The Double Domain Decomposition (DDD) methodology, illustrated by Figure 4.2, has been intro-
duced in the YALES2 solver by Moureau et al. [25], mostly to avoid the issues of the SDD method and
optimize accesses to memory. An additional level of subdomains is introduced, splitting the subdomain
assigned to a given processor into groups. The advantages of this approach regarding the issues of load
balancing and local mesh refinement are quite obvious. The former can be managed by transferring
groups of control volumes from one subdomain to another, which will make the computational effort
required for the reconstruction of the subdomains and communicators more reasonable. As for the
latter, it is performed on groups, removing the need of a global reconstruction of the subdomain.
Moreover, the groups create a coarse grid on the domain, on which preconditioning methods such as
deflation can be easily implemented. Last but not least, if the amount of data on one group can be
stored in the cache memory, the amount of data passing between the Random Access Memory and the
cache memory is reduced.

The implementation of internal communicators, that is the communicators between the groups on
the same processor, and external communicators, that is the communicators between the subdomains,
is not detailed here. External communicators rely on MPI requests, and internal communicators are
either local or based on OpenMP intra-processor requests.

15

Proc #2

Proc #1 Proc #3

Figure 4.1: Single Domain Decomposition of a two-dimensional unstructured mesh. The thick edges are
boundaries between the subdomains belonging to different processors; the cells between these boundaries
are the ones involved in the external communicators.

4.2 Choice of parameters for massively parallel uses

Given a grid on the whole domain, the number of processors used for the computation and the number
of control volumes that should belong to any group, the splitting of the grid is performed by either the
METIS [17] or SCOTCH [31] libraries. The algorithms used by both libraries optimize the splitting
by minimizing the edgecut, in other words the global weight of the cell edges or faces that belong to
the boundaries between subdomains, and the load unbalance between the processors. Therefore, there
are two parameters that have a strong influence on the efficiency of the program.

First, the number of processors used for a simulation determines the number of cells for each
processor: if there are too few cells for each processor, the computational time becomes negligible
towards the communication time, thus worsening the global performances; if there are too many cells
for each processor, the computation is slowed down by cache memory overlappings.

Second, the size of a group has to be determined according to several parameters. If a combination
of MPI and OpenMP is implemented, one has to consider the distribution of the groups over the cores of
every computation node. If pure MPI is used, the number of cells per group is still of great importance,
as it has an influence on the efficiency of the DPCG and on the ”under-the-surface” management of
the cache memory of each processor. Ideally, the piece of data relative to a given group should fit
entirely in the cache.

The optimal values of these parameters are defined as the values for which the reduced efficiency,
that is the global CPU time per control volume (Section 5.5), reaches a minimum. These values
obviously depend on the architecture and properties of the supercomputer used for the computations:
number of cores per processor, frequency of each core, storage size, size of the cache memory, and so
on. A theoretical computation of the ideal parameters for a given configuration would have to take
into account a large set of data, with the risk of neglecting some of greater importance than thought.

16

Proc #2

Proc #1 Proc #3

Figure 4.2: Double Domain Decomposition of a two-dimensional unstructured mesh. The thick edges are
boundaries between the subdomains belonging to different processors; the cells between these boundaries
are the ones involved in the external communicators. The highlighted cells are at the frontiers between
different groups; they are involved in the internal communicators.

This is why an empirical study should be performed before any large computation. A preliminar study
on small test-cases makes it possible to find a nearly optimal number of cells to be assigned to each
core, and a good number of control volumes per group.

On the Babel machine for instance (Section 5.1), the number of control volumes on each core should
be around ten thousands: communication times tend to become too important if this value is lowered,
and memory swapping times become predominant if it is raised too much.

17

Chapter 5

Numerical results

5.1 Studied configurations

During the simulation of a turbulent low-Mach flow, solving the pressure Poisson equation, that links
the pressure to the velocity, can be the most time-consuming step of the whole simulation. The
work described in this report was particularly aiming at reducing the cost of the computation of the
instantaneous pressure fields. It has been implemented in the unstructured LES solver YALES2, for
all numerical experiments and validations described hereafter. The novel solver, built from the A-
DEF2 solver but using the improved initial guesses and adaptive convergence criterion techniques with
parameters nig and CN respectively, is called RA-DEF2(nig,CN) in what follows.

Several test cases have been studied, ranging from simple validation tests to simulations of turbulent
flows in complex geometries. Their names and descriptions are as follows:

2D Poisson is a simple test case corresponding to the solving of a Poisson equation on a unity square
centered on the origin, meshed with triangular elements. The right-hand side of the equation,
for this test case, comes from a linear combination of several sinusoidal signals with different
frequencies; a function f is defined as

f(x, y) = 500 sin (πx) sin (πy) + 1, 000 sin
(πx

0.2

)
sin
(πy

0.2

)
+ 6, 000 sin

(πx

0.033

)
sin
(πy

0.041

) (5.1)

and the value of the right-hand side on every cell is the product of the value of f on the center of
the cell by the volume of the cell. The mesh is refined towards the center, as shown by Figure 5.1,
with a resulting RHS as plotted on Figure 5.2,

3D Cylinder is a test case corresponding to the simulation of an isothermal fluid flow around a
cylindrical obstacle placed across a three-dimensional box. The box has a length of 60 cm, a
width of 30 cm and a height of 5 cm. The fluid comes at a constant speed of 15 m.s−1 from the
inlet, that is the whole left section of the box, in the direction orthogonal to the plane of the
inlet. The cylinder, whose diameter is 1 cm, is placed 10 cm after the inlet, at mid-width, and
goes through the whole height of the box. The coarsest mesh on this configuration, counting
491,000 elements, is illustrated by Figure 5.3.

Preccinsta is a test case corresponding to the simulation of isothermal fluid flows in the PREC-
CINSTA burner. The name of the so-called PRECCINSTA burner stands for PREdiction and
Control of Combustion INSTAbilities for industrial gas turbines. This configuration, experimen-
tally investigated by Meier et al. [22], has been thoroughly studied from both experimental and

18

Figure 5.1: Zoom on the mesh of the 2D Poisson test case. The volume ratio between the largest and
smallest cells of the mesh is about 80,000 to 1.

Figure 5.2: Right-hand side of the Poisson equation of the 2D Poisson test case.

Figure 5.3: Longitudinal external section of a 491,000 elements mesh of the 3D Cylinder configura-
tion.

19

numerical points of view [19], and widely used as a validation database for combustion models
[13, 34, 26] or for numerical methods applied to the solving of the Navier-Stokes equations [24].

The geometry considered in the simulations features a plenum, a swirler, a square combustion
chamber and a cylindrical exhaust pipe, as represented in Figure 5.4. Air at ambient temperature
is pumped at a speed of 24.5 m.s−1 to the 79 mm wide plenum, leading to the injector in which
it goes through 12 oblique vanes; in each of them, methane is injected at the same speed by
a 1 mm wide pipe orthogonal to the corridor. The nozzle exit has a diameter of 27.85 mm,
and leads to the cylindrical combustion chamber, that is 85 mm wide and 114 mm long. Burnt
gases go through a cone-shaped exit leading to a short exhaust pipe of diameter 40 mm. The
corresponding Reynolds number is approximately 40,000. The whole geometry is meshed in the
presented computations.

Figure 5.4: Longitudinal median section of the computed geometry of the PRECCINSTA burner.

Blade HT is a test case corresponding to the simulation of a turbulent flow around the T7.2 turbine
blade, performed in order to study the effect of turbulence on heat transfers. The T7.2 blade has
been designed by MTU, based on a design for a typical cooled low-pressure turbine rotor; the
shape of its pressure size induces, for given inlet conditions, a great turbulent intensity under
the blade, due to the creation of an important recirculation zone. This blade has been studied
experimentally by Ladisch et al. [18], and numerically by Lutum and Cottier [20]; however, the
transition to turbulence occurring at the suction side was not captured well by the RANS method
used by the latter, with important consequences on the intensity of heat transfers, so that a LES
study is currently performed in order to improve the numerical results on this configuration.

The maximum thickness of the blade is 16.53 mm and its chord lenght is 73.93 mm. For the
computations, the inlet velocity was set at 29.16 m.s−1; the fluid temperature is 350K and the
blade is cooled at 290K, giving Dirichlet boundary conditions, with a no-slip condition on the
surface of the blade. The resulting Reynolds number of 150,000 at the exit allows the simulation
of a physical time long enough to obtain converged results.

The meshes used for these computations have the same shape as the one illustrated by Figure 5.5;
the smallest edge sizes range approximately from 30 microns, in the 34.5 million mesh studied
hereafter, to 4 microns in the 2.2 billion mesh, and the largest from 3000 to 400 microns for the
same meshes respectively. The dimensions of the bounding box for these grids are 18.1 cm by
9.87 cm by 2.85 cm; periodicity conditions are effective on the y and z directions. A section of an
instantaneous velocity field computed on a mesh counting 2.2 billion cells is shown in Figure 5.6.

Triple Disk Injector aka TDI is a test case consisting in modeling the primary atomization of
a liquid fuel in air at atmospheric conditions with realistic properties for the liquid and gas.
This injector is formed by three off-centered disks of different diameters, which create strong

20

Figure 5.5: Longitudinal external section of a coarse mesh around the T7.2 blade.

Figure 5.6: Longitudinal section of the instantaneous velocity field around the T7.2 blade, computed on
a mesh of 2.2 billion tetrahedra on 16,384 cores of Babel.

recirculation zones in the fuel in order to form a liquid sheet from the outlet of the injector.
This sheet disintegrates quickly to form small droplets even for moderate pressure losses. Several
measurement campaigns were conducted by Grout et al [14] to assess advanced optical diagnostics.
In the present computations of this experiment, both the inside of the injector and the basis of
the liquid sheet are simulated. The geometry of the injector, which has a circular outlet with
a diameter of 180 µm, and the simulated liquid sheet are shown in Figure 5.7. The Reynolds
number in the liquid is approximately 3, 700, and the liquid Weber number is WeL = 1, 061.

This two-phase flow is modeled with a Ghost-Fluid Method [6] and the tracking of the interface
is based on a Conservative Level Set approach [4]. This type of flow is particularly challenging

21

for linear solvers, because the Poisson equation resulting of the governing equations is

∇ ·
(

1

ρ
∇P

)
= RHS , (5.2)

where the variation of the density ρ reaches three orders of magnitude across the interface.

Figure 5.7: Geometry of the injector and simulated liquid sheet for the Triple Disk Injector on a
grid counting 1.6 billion tetrahedral cells.

Depending on the studied cases and the sizes of the meshes, several machines have been used:

A 12-core Intel Xeon X5680 CPU at 3.33GHz has been used for the smallest test-cases, in which
only the numbers of iterations are significant.

The 2D Poisson test case, on a mesh of 3.23 million triangular elements, with 200 elements per
group, has been run on 4 cores of this machine, and the same test-case on a 12.9 million mesh,
with 400 elements per group, on 8 cores of the same machine.

The 3D Cylinder test case, on a mesh counting 491 thousand tetrahedral elements, with 500
elements per group, has been run on 4 cores of this machine.

The Preccinsta test case, on a mesh counting 1.7 million tetrahedral elements, with 2000 ele-
ments per group, has been run on 4 cores of this machine.

Babel, an IBM Blue Gene/P machine , has been used for the major part of test-cases, in which
the numbers of iterations and the statistics on computational times are significant. This machine,
owned by a French institute for the development of scientific computation called IDRIS, counts
10 racks of 1,024 computing nodes, each one consisting of 4 cores running at 850MHz.

The Preccinsta test case, on a mesh of 110 million tetrahedral elements, with 2,000 elements
per group, has been run on 512 cores (128 nodes) of this machine.

The Blade HT test case on a mesh of 34.5 million tetrahedral elements, with 500 elements per
group, has been run on 512 cores (128 nodes) of this machine. The same test case, on a 2.2
billion mesh with 5,000 elements per group, has been run on 16,384 cores (4,096 nodes) of this
machine.

22

The TDI test case, on a mesh of 1.6 billion tetrahedral elements, with 1,000 elements per group,
has been run on 16,384 cores (4,096 nodes) of this machine.

Curie, a BullX machine , is a 2 petaflop Tier-0 supercomputer installed in France at the TGCC,
operated by the CEA (French atomic energy agency) and started on March 1st, 2012. It is split
into three different types of resources aiming at different kinds of computations, from hybrid
OpenMP/MPI to pure MPI codes. The so-called ”thin nodes”, dedicated to MPI codes, are
10080 Intel Xeon new generation octocore nodes.

The Blade HT test case, on meshes of 35 million, 280 million, 2.2 billion and 17.9 billion
tetrahedra, every one of them with 5000 elements per group, has been run on respectively 128;
1,024; 8,192 and 8,192 cores (16; 128; 1,024 and 1,024 nodes) of this machine. To distinguish
these runs from the runs of the Blade HT test case on Babel, the label Blade HT Curie has
been adopted in what follows.

It also has to be noticed that the average values presented in Sections 5.4 and 5.5 have been
computed for different numbers of temporal steps, depending on the case studied.

The first 100 temporal steps are considered for the 3D Cylinder test case and for all the simu-
lations in the PRECCINSTA burner. As for the Blade HT, the first 400 steps have been taken into
account on the 34.5 million mesh on 256 cores, the first 750 steps for the same simulations on 512
cores; 45 temporal steps have been run on the Blade HT 2.2 billion mesh, and only 23 on the TDI
test case, as the simulations without initial guesses and adaptive convergence criterion did not go past
these numbers of iterations within the given time limits. All the results for the Blade HT Curie test
cases take into account the first 200 temporal steps, except in Section 5.7.

Finally, the convergence criterion γ on the fine grid is 10−12 for the 2D Poisson test case, 10−10

for all the simulations of the 3D Cylinder test case and the PRECCINSTA burner, 10−9 for all the
simulations of the Triple Disk Injector, and 5× 10−9 for all the simulations of the T7.2 blade.

5.2 Effect of the computation of initial guesses on the number of
iterations

The first parameter studied has been the number of former solutions used for the computation of the
initial guesses on the coarse grid, that is nig. Table 5.1 shows the optimal gains, for given choices
of nig, on the number of iterations on the coarse grid, for test cases whose sizes range from 3.23 to
110 million cells. For the 2D Poisson case, the 3D Cylinder and the 1.7 million elements on the
Preccinsta burner, values in the set {5; 10; 25; 50} have been tested; for the 110 million mesh for the
Preccinsta test case, they were in the set {1; 2; 5; 10; 20}.

Test case 2D Poisson 3D Cylinder Preccinsta

Elements (×106) 3.23 12.9 0.49 1.7 110
Cores 4 8 4 4 512

Percentage of gain 2.67 % 2.19 % 11.8 % 8.11 % 9.67 %

Table 5.1: Gain on the average number of iterations on the coarse grid for the 2D Poisson,
3D Cylinder and Preccinsta test cases when computing initial guesses.

It can be pointed out that the highest value of nig has not always given the least number of
iterations; for the 110 million Preccinsta test case, for instance the best results were obtained for
nig = 1, although the other non-zero values for nig gave results that only differed from 0.5 to 2.6 %.

These first results seem to show that the computation of initial guesses as described in Chapter 2
can be of small importance for simple systems, but may be more useful for simulations in more complex

23

geometries. The choice of an effective value for nig may be strongly case-dependent and related to
many different factors, which is why this method alone does not seem to be of great interest. The
adjunction of this method to the adaptation of the convergence criterion on the coarse grid introduced
in Chapter 3, however, has been proved very efficient as shown in Sections 5.4 and 5.5.

5.3 Effect of the adaptation of the convergence criterion on the num-
ber of iterations

As mentioned in Section 3.3, the value of CN has to be chosen so that two opposite effects are avoided:
a very low value would result in no effective change in the behaviour of the solver on the coarse level,
and a value too high would worsen the behaviour of the solver on the fine grid.

These effects are illustrated by Figures 5.8 and 5.9, that show the behaviour of the solver on both
levels for different values of CN on the 1.7 million mesh of the Preccinsta test case. The values of
CN are not the same for both figures, for lisibility reasons. For instance, for CN = 0.02, the number
of iterations on the coarse grid is quite the same as for CN = 0.01, whereas the number of iterations
on the fine grid raises dramatically. On the other hand, activating the adaptation of the convergence
criterion on the coarse grid with CN = 0.0001 leaves the number of iterations on the fine grid nearly
unchanged whereas the number of iterations on the coarse grid drops. These figures are not means to
be exhaustive, but to show a general trend followed by the numbers of iterations on both grids when
CN varies: the average number of iterations on the coarse grid is reduced by higher values of CN , but
there seems to be a threshold close to 0.01, with the values of CN above this threshold raising the
average number of iterations on the fine grid by more than 10 %.

20 40 60 80
Temporal step

3000

4000

5000

6000

7000

8000

It
er

at
io

ns
 o

n
th

e
co

ar
se

 g
ri

d
(r

un
ni

ng
 a

ve
ra

ge
s

of
 w

id
th

 5
)

No CC
CC(0.0001)
CC(0.001)
CC(0.005)
CC(0.01)

Figure 5.8: Number of iterations at each temporal step, for different values of CN , on the coarse grid
for the Preccinsta test case on a mesh counting 1.75 million elements on 4 processors.

The behaviour of the solver when changing the value of CN is qualitatively the same for every
configuration and mesh size, but the threshold value of CN and the corresponding gains may differ
from one case to another. This is why series of tests have been performed, for a wide range of values
of CN , namely values from 0.0001 to 0.05, on the same test cases as those in Section 5.2. The only
test case for which the number of iterations on the fine grid stays low even for high values of CN is
the 3D Cylinder test case; for the tested values, the reduction factor on the number of iterations on
the coarse grid ranges from 1.29 for CN = 0.0001 to 2.43 for CN = 0.02. For every other test case,
Table 5.2 gives the highest value of CN , among the values that have been tested, for which the average

24

20 40 60 80
Temporal step

110

120

130

140

150

160

170

It
er

at
io

ns
 o

n
th

e
fi

ne
 g

ri
d

(r
un

ni
ng

 a
ve

ra
ge

s
of

 w
id

th
 5

)

No CC
CC(0.001)
CC(0.01)
CC(0.02)

Figure 5.9: Number of iterations at each temporal step, for different values of CN , on the fine grid for
the Preccinsta test case on a mesh counting 1.75 million elements on 4 processors.

number of iterations on the fine grid is raised by less than 10 %, as well as the corresponding reduction
factor on the number of iterations on the coarse grid.

Test case 2D Poisson Preccinsta

Elements (×106) 3.23 12.9 1.7 110
Cores 4 8 4 512

Threshold value of CN 0.001 0.001 0.01 0.005
Reduction factor 3.76 4.27 2.2 1.95

Table 5.2: Threshold value of CN and corresponding reduction factor on the number of iterations on
the coarse grid for the 2D Poisson and Preccinsta test cases.

These results give a good idea of the typical values of CN to be used, that is values from 0.001 to
0.01. Further investigation seems to confirm that the value 0.005 is a good candidate.

5.4 Effect of the combined techniques on the numbers of iterations

From the beginning, it has been expected that the initial guess computation and the adaptive con-
vergence criterion method would work better when used together in the same solver, as explained in
Section 1.5. In order to confirm this intuition, all possibilities have been tested, with or without the
use of each method, on the test cases described above.

Examples of the behaviour of the solver on the coarse grid, when changing the values of CN and
nig, are plotted over the temporal steps for two test cases in Figures 5.10 and 5.11; three curves only
are plotted on each graph so that the curves can easily be distinguished, but the behaviour of the
solver when changing these parameters is the same, qualitatively speaking, in every simulation.

The combination of the initial guesses computation and the use of the convergence criterion adap-
tation on the coarse grid has two positive effects: first, it helps getting the number of iterations on the
coarse grid still lower than with the adaptive convergence criterion alone; second, it has been observed
that the initial guess can also stabilize the solver when a high convergence criterion adaptation param-
eter is taken. This effect is illustrated by Figure 5.12, that shows the numbers of iterations on both
grids on the 1.75 million mesh of the Preccinsta test case, for different values of nig and a constant

25

Temporal step
200 400 600

35

40

45

50

N
um

be
r

of
 it

er
at

io
ns

 o
n

th
e

fi
ne

 g
ri

d
(r

un
ni

ng
 a

ve
ra

ge
s

of
 w

id
th

 2
0)

200 400 600
0

1000

2000

3000

4000

5000

6000

N
um

be
r

of
 it

er
at

io
ns

 o
n

th
e

co
ar

se
 g

ri
d

(r
un

ni
ng

 a
ve

ra
ge

s
of

 w
id

th
 2

0)

A-DEF2
RA-DEF2(10,0.001)
RA-DEF2(25,0.005)

Figure 5.10: Number of iterations at each temporal step, with different sets of parameters, on the coarse
grid for the Blade HT test case, on a mesh counting 35 million elements on 512 processors.

Temporal step
10 20 30 40

0

5000

10000

15000

N
um

be
r

of
 it

er
at

io
ns

 o
n

th
e

co
ar

se
 g

ri
d

10 20 30 40
65

70

75

80

N
um

be
r

of
 it

er
at

io
ns

 o
n

th
e

fi
ne

 g
ri

d
(m

ov
in

g
av

er
ag

e
of

 w
id

th
 5

)

A-DEF2
RA-DEF2(25,0.005)
RA-DEF2(50,0.01)

Figure 5.11: Number of iterations at each temporal step, with different sets of parameters, on the coarse
grid for the Blade HT test case, on a mesh counting 2.2 billion elements on 16,384 processors.

high value for CN , namely CN = 0.02. The number of iterations on the fine grid, raised by the choice
of the negligibility constant, is reduced by the computation of initial guesses on the coarse grid; this
reduction is roughly the same for any value of nig greater or equal to 5, although Figure 5.12 only
shows the impact of the values nig = 5 and nig = 50 for commodity reasons.

The number of iterations on the coarse grid goes on dropping when one raises the value of CN ,
but it has been observed that, in every case, CN = 0.005 is close to a threshold; if the value of CN is
chosen above this threshold, the global computational time rises again in several cases. What has to
be noticed, however, is that CN = 0.005 usually does not prevent the solver on the fine grid to attain
the required convergence within a quite reasonable number of iterations, that is a number close to the
number of iterations required without any adaptation of the convergence criterion on the coarse grid.
In all test cases studied here, the only exception is the Triple Disk Injector case, for which even
small values of CN result in important variations of the behaviour of the solver on the fine grid; this

26

Temporal step
20 40 60 80

110

120

130

140

150

160

170

It
er

at
io

ns
 o

n
th

e
fi

ne
 g

ri
d

(r
un

ni
ng

 a
ve

ra
ge

s
of

 w
id

th
 5

)

20 40 60 80
0

1000

2000

3000

4000

It
er

at
io

ns
 o

n
th

e
co

ar
se

 g
ri

d
(r

un
ni

ng
 a

ve
ra

ge
s

of
 w

id
th

 5
)

RA-DEF2(0,0.02)
RA-DEF2(5,0.02)
RA-DEF2(50,0.02)

Figure 5.12: Numbers of iterations on both grids for the RA-DEF2 solver, with CN = 0.02 and different
values for nig, for the Preccinsta test case, on a mesh counting 1.75 million elements on 4 processors.

can be explained by the steepness of the linear problem to be solved for this particular simulation.
However, the iterations on the coarse grid are still decreased by an important factor, as can be seen of
Figure 5.13.

Temporal step
5 10 15 20

0

50000

1e+05

1,5e+05

2e+05

2,5e+05

3e+05

It
er

at
io

ns
 o

n
th

e
co

ar
se

 g
ri

d

5 10 15 20
0

200

400

600

800

1000

N
um

be
r

of
 it

er
at

io
ns

 o
n

th
e

fi
ne

 g
ri

d

A-DEF2
RA-DEF2(d)
RA-DEF2(50,0.01)

Figure 5.13: Number of iterations on both grids at each temporal step, for the A-DEF2, RA-DEF2(d)
and RA-DEF2(50,0.01) solvers, for the TDI test case, on a mesh counting 1.6 billion elements, on
16,384 processors.

A close study of the results obtained with this value of CN , on test cases running on less than
a thousand processors, has shown that, in some cases, recycling more than 25 former solutions on
the coarse grid can represent a waste of resources, as the number of iterations will not drop any-
more. This is why the values (nig = 25;CN = 0.005) have been chosen as default input values for the
solver; for commodity reasons, RA-DEF2(25;0.005) is called RA-DEF2(d) in what follows, as well as
in Figure 5.13.

Table 5.3 gives an extensive comparison of the average number of iterations on the coarse grid
per temporal step, for every case studied for this report expect the 2D Poisson test case, for the

27

A-DEF2 and RA-DEF2(d) solvers. These results show that the efficiency of the developed method is
even greater for more complex simulations, with a reduction factor on the number of iterations on the
coarse grid ranging here from 2.62 for the 3D Cylinder test case to a striking 12.5 for the Triple
Disk Injector.

Test case 3D Cylinder Preccinsta Blade HT TDI

Elements (×106) 0.49 110 34.5 2,200 1,600
Cores 4 512 512 16,384 16,384

A-DEF2 2,468 13,203 3,813 10,364 216,153

RA-DEF2(d) 941 3,044 859 1,948 17,227

Reduction factor 2.62 4.34 4.44 5.32 12.5

Test case Blade HT Curie

Elements (×106) 34.5 276 2,200
Cores 128 1,024 8,192

A-DEF2 4,002 6,233 9,593

RA-DEF2(d) 1,059 1,670 2,293

Reduction factor 3.78 3.73 4.18

Table 5.3: Average number of iterations on the coarse grid per temporal step for the A-DEF2 and
RA-DEF2(d) solvers, followed by the reduction factor of the number of iterations, for all test cases
except the 2D Poisson test case.

5.5 Effect on computational and communication times

The time spent on the coarse level mainly consists of communications between cores, so that the drastic
reduction of the number of iterations on the coarse grid, clearly seen in Table 5.3, is bound to reduce
both the computational time and the proportion of communications towards global computational
time. Both of them can be given by the YALES2 solver at every temporal step, but the former will
be studied via the reduced efficiency of a temporal step, that is the product of the time spent in the
solver by the number of cores, divided by the number of control volumes in the mesh; it stands for the
average computational time spent by the computing machine for every control volume in the mesh,
and would be constant for a given configuration on a given machine, when changing the number of
cores dedicated to the solving, if communication times were negligible.

The average reduced efficiencies for several test cases, that is the ones running on several hundreds
or thousands of processors, for both the A-DEF2 and RA-DEF2(d) solvers, are given by Table 5.4.

Quite obviously, as the whole simulation time is not spent in the Poisson solver, the reduction of
computational times is not directly proportional to the reduction of the number of iterations; never-
theless, these results clearly show the efficiency of the novel RA-DEF2 method, especially for massively
parallel simulations on complex geometries. Once again, the results on the TDI test case are striking,
with a nearly four-fold reduction of computational times. This particular result is matching the reduc-
tion of the number of iterations on the coarse grid, as the solving of the pressure Poisson equation by
the A-DEF2 solver accounts for 58.9 % of the global computational time for this simulation.

Figure 5.14 shows the reduced efficiencies for the first twenty temporal steps of the TDI test case,
for the same three solvers as in Figure 5.13, so that the efficiency of the RA-DEF2 method, both in
terms of number of iterations and computational times, can be linked. It is obvious that the reduction
of the number of iterations on the coarse grid more than makes up for the important increase of the
number of iterations on the fine grid in this case.

As the reduction of computational times is strongly linked to the reduction of communications,

28

Test case Preccinsta Blade HT TDI

Elements (×106) 110 34.5 2,200 1,600
Cores 512 512 16,384 16,384

A-DEF2 646.7 776.6 862.5 9,023

RA-DEF2(d) 527.7 685.2 660 2,533

Gain 18.4 % 11.8 % 23.5 % 71.9 %

Test case Blade HT Curie

Elements (×106) 34.5 276 2,200
Cores 128 1024 8192

A-DEF2 77.2 96.21 243.7

RA-DEF2(d) 70.4 76.51 128

Gain 8.81 % 20.5 % 47.5 %

Table 5.4: Average reduced efficiency per temporal step for the A-DEF2 and RA-DEF2(d) solvers, in
microseconds-cores per control volume and per iteration, for massively parallel test cases.

5 10 15 20
Temporal step

0,002

0,004

0,006

0,008

0,01

0,012

R
ed

uc
ed

 e
ff

ic
ie

nc
y

(s
*p

ro
c/

no
de

)

A-DEF2
RA-DEF2(d)
RA-DEF2(50,0.01)

Figure 5.14: Reduced efficiencies for each temporal step, for the A-DEF2, RA-DEF2(d) and RA-
DEF2(50,0.01) solvers, for the TDI test case on a mesh counting 1.6 billion elements on 16,384
processors.

the proportion of the global computational time spent in communications is bound to be decreased by
the RA-DEF2 method. The average proportions of communications over global computational times,
in the massively parallel solving of several test cases by the A-DEF2 and RA-DEF2(d) solvers, are
given by Table 5.5. The important decrease of these proportions, ranging from a 20 % reduction to
a two-fold drop, has been expected from the beginning, as the iterations of the coarse grid tend to
account for the major part of interprocessor communications in massively parallel simulations.

5.6 Effect on the weak scaling

The weak scaling of a solver is a measurement of the variation of the computational times when
the number of processors varies, with a fixed problem size per processor. If communications were
instantaneous, one could expect that multiplying the number of processors by x would divide the
computational times by x; the resulting speed-up would then be equal to the number of processors

29

Test case Preccinsta Blade HT TDI

Elements (×106) 110 34.5 2,200 1,600
Cores 512 512 16,384 16,384

A-DEF2 11.35 % 16.15 % 27.35 % 58.9 %

RA-DEF2(d) 9.015 % 9.496 % 12.71 % 36.28 %

Gain 20.6 % 41.2 % 53.5 % 38.4 %

Test case Blade HT Curie

Elements (×106) 34.5 276 2,200
Cores 128 1,024 8,192

A-DEF2 14.24 % 19.46 % 18.92 %

RA-DEF2(d) 10.96 % 13.16 % 13.83 %

Gain 23 % 32.4 % 26.9 %

Table 5.5: Average proportions of communications for the initial DPCG and the optimized DPCG, for
test cases running on several hundreds or thousands of processors.

involved in the computations, resulting in a linear scaling. However, these ideal values are never
reached in practice, as the ratio between the actual speed-up and the number of processors tends to
decrease when the number of processors is raised.

The number of iterations on the coarse grid, and thus the number of interprocessor communications,
are particularly decreased on massively parallel computations using the RA-DEF2(d) solver. In order
to measure the impact of this reduction on the speed-up of the Yales2 solver, its weak scaling has been
studied using both the A-DEF2 and RA-DEF2(d) solvers, on three meshes on the Blade HT test
case. Simulations on the 34.5 million mesh have run on 256 cores of the Babel machine, and the 276
million and 2.2 billion meshes obtained by successive non-degenerative homogeneous mesh refinements
[33] were used for the 2,048 and 16,384 cores simulations respectively, on the same machine.

The computational times for 40 successive iterations were averaged. The first 10 iterations have
been skipped, in order to focus on the computations occurring after the regime has become close to sta-
tionary from a statistical point of view. The resulting weak scaling, with the results of the simulations
on 256 cores chosen as reference points, is plotted in Figure 5.15. One can see that the modifications of
the A-DEF2 algorithm, that have created the RA-DEF2(d) solver, result in a tremendous improvement
of the weak scaling of the YALES2 solver. The speed-up between the simulations on 256 and 16,384
cores reaches 90.57 % of its ideal value when using the RA-DEF2(d) solver, versus 75.44 % with the
A-DEF2 solver.

5.7 Effect on the extreme scaling

Compared to the nodes of Babel used hereinbefore, the fine nodes of Curie are more powerful and
communications between them are fast, enabling one to perform computations on very large meshes.
An additional run has been performed on 8,192 processors (1,024 nodes) of this machine, on a mesh
of 17.8 billion tetrahedral elements. Although the efficiency statistics have only been computed every
ten temporal steps, one can consider that the averages on the whole run, consisting of 1,600 steps, are
nearly exact. The results of this run are given, and compared with data from the 2.2 billion elements
on the same number of processors, in Table 5.6.

The average reduced efficiency is lower by nearly 15 % than the one on a 2.2 billion element mesh on
the same number of processors, that is 110 microseconds-cores per iteration and per control volume,
instead of 129. It is probably a direct consequence of the reduction of communications due to the
higher amount of data on each core, as the proportion of communications drops from 13.8 % to 9.55 %

30

0 4096 8192 12288 16384
Number of cores

0 0

4096 4096

8192 8192

12288 12288

16384 16384

Sp
ee

d-
up

Linear scaling
Yales2 with A-DEF2 solver
Yales2 with RA-DEF2(d) solver

Figure 5.15: Weak scaling of YALES2 on Babel, up to 16,384 processors and 2.2 billion elements, for
the Blade HT test case.

Test case Blade HT Curie

Elements 2.2 billion 17.8 billion

Average reduced efficiencies 128 110.3
Average proportions of communications 13.83 % 9.55 %

Average numbers of iterations on the coarse grid 2293 4436

Table 5.6: Average reduced efficiencies per temporal step, in microseconds-cores per control volume and
per iteration; average proportions of communications over the global computational times; and average
numbers of iterations on the coarse grid per iteration on the fine grid; for the Blade HT Curie test
case, on 2.2 and 17.8 billion elements, running on 8,192 cores.

by refining the mesh, from 2.2 to 17.8 billion cells, without raising the number of processors. Still, this
result indicates that the YALES2 solver with the RA-DEF2(d) linear solver is able to handle such large
meshes and to produce the corresponding simulations with satisfying results in terms of computational
times.

31

Chapter 6

Summary

Simulations of incompressible flows require the solving of the pressure Poisson equation at every tem-
poral step, and this particular solving can account for the most important part of the computational
cost of the solver. The use of a deflation method is an efficient way of reducing the cost of a Poisson
solver and, unlike multigrid methods, its implementation is easy in a solver on unstructured meshes
and can be adapted to any iterative solver; nevertheless, as an important part of the computational
time of a deflated solver is spent in communications on the coarse grid, the reduction of the number
of iterations on this grid is a critical step towards the optimization of the solver.

Two methods have been developed in order to accelerate the convergence of a DPCG solver for
the pressure Poisson equation. The first one consists in determining, for every system to solve on the
coarse grid, an initial guess computed from the solutions of the previous systems on this grid. The
method developed in this report is inspired by the projection method introduced by Fischer in [8],
but does not require the orthogonality, nor even the linear independence, of the recycled vectors, and
ensures the optimality of the computed initial guess for the given input.

The second method consists in adapting the convergence criterion of the system on the coarse grid,
in a way that still ensures that the approximate solution is precise enough not to deteriorate the global
convergence behavior of the solver. The analytical introduction of the error on the solution of a system
on the coarse grid, and the study of its impact on the following operations in the current iteration of
the fine grid solver, are used. As a result, at every iteration of the solver on the fine grid, a convergence
criterion on the coarse grid is computed that ensures that a requested tolerance on the descent basis
on the fine grid is not reached.

These two methods have been implemented in the pressure Poisson solver of the unstructured
LES solver YALES2 developed at the CORIA laboratory. Their efficiency has been tested on several
test cases, ranging from a model two-dimensional Poisson problem solved on four processors to the
simulation of realistic three-dimensional turbulent flows in complex geometries on up to 16384 proces-
sors. Smaller test cases have provided indicative results concerning the choice of parameters for both
methods and the possible reduction on the number of iterations on the coarse grid; massively parallel
simulations of realistic turbulent flows in complex geometries have confirmed the validity of the chosen
default parameters and provided reliable results on the reduction of computational times thanks to
this novel DPCG method.

With the default parameters chosen for the method on massively parallel computations, the number
of iterations on the coarse level can reach a twelve-fold drop, which in term implies a reduction of the
computational time spent in the pressure Poisson solver of up to 70 %, accompanied by a reduction of
the global proportion of communication times of the LES solver by 20 to more than 50 %. Moreover, the
novel solver has proven stable and capable of handling meshes up to 17.8 billion tetrahedral elements.

This progress is of course an important asset for the massively parallel simulation of incompressible
flows, but the efficiency of a Poisson solver is vital in many other problems derived from physics, such

32

as electrostatics, quantum mechanics, and so on. New multi-level deflation methods can already be
considered, inspired by the multigrid methodology, but way more flexible and easy to implement in a
solver on unstructured meshes.

Acknowledgements

We acknowledge that the results in this report have been achieved using the PRACE Research Infras-
tructure resource Curie based in France at the CEA-TGCC center under the allocation x2012026880.
This work was also granted access to the HPC resources of IDRIS under the allocation 2012-6880
made by GENCI (Grand Equipement National de Calcul Intensif). We would like to thank Ghislain
Lartigue, David Taieb and Luc Vervisch for their helpful support.

33

Bibliography

[1] Aubry, R., Mut, F., Löhner, R., and Cebral, J. R. Deflated preconditioned conjugate
gradient solvers for the pressure-poisson equation. Journal of Computational Physics 227 (2008),
10196–10208.

[2] D’Azevedo, E. F., Eijkhout, V., and Romine, C. H. Lapack Working Note 56 - Conjugate
Gradient algorithms with reduced synchronization overhead on distributed memory multiproces-
sors. Tech. rep., Mathematical Sciences Section, Oak Ridge National Laboratory, December 1999.

[3] de Sturler, E., and Kilmer, M. Recycling subspace information for diffuse optical tomogra-
phy. SIAM J. Sci. Comput 27 (2004), 2140–2166.

[4] Desjardins, O., Moureau, V., and Pitsch, H. An accurate conservative level set/ghost fluid
method for simulating turbulent atomization. J. Comput. Phys. 227, 18 (2008), 8395–8416.

[5] Engell, M., Ginsburg, T., Rutishauser, H., and Stiefel, E. Refined iterative methods
for computation of the solution and the eigenvalues of self-adjoint boundary value problems.
Birkhauser Verlag (1959).

[6] Fedkiw, R., Aslam, T., Merriman, B., and Osher, S. A non-oscillatory Eulerian approach
to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (1999),
457–492.

[7] Feng, L., Benner, P., and Korvink, J. G. Parametric model order reduction accelerated by
subspace recycling.

[8] Fischer, P. F. Projection techniques for iterative solution of Ax = b with successive right-hand
sides. Computer methods in applied mechanics and engineering 163 (1998), 193–24.

[9] Fletcher, R. Conjugate gradient methods for indefinite systems. In Proc. of the Dundee Biennial
Conference on Numerical Analysis (New-York, 1975), G. Watson, Ed., Springer-Verlag.

[10] Fletcher, R., and Reeves, C. M. Function minimization by conjugate gradients. Computer
Journal 7 (1964), 149–154.

[11] Fox, L., Huskey, H. D., and Wilkinson, J. H. Notes on the solution of algebraic linear
simultaneous equations. Quarterly Journal of Mechanics and Applied Mathematics 1 (1948),
149–173.

[12] Frank, J., and Vuik, C. On the construction of deflation-based preconditioners. SIAM Journal
on Scientific Computing 23, 2 (2001), 442–462.

[13] Galpin, J., Naudin, A., Vervisch, L., Angelberger, C., Colin, O., and Domingo, P.
Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner. Combustion and Flame
155, 1 (2008), 247–266.

34

[14] Grout, S., Dumouchel, C., Cousin, J., and Nuglisch, H. Fractal analysis of atomizing
liquid flows. International Journal of Multiphase Flow 33, 9 (2007), 1023–1044.

[15] Hestenes, M. R. Iterative methods for solving linear equations (originally published in 1951 as
NAML Report No. 52-9, National Bureau of Standards, Washington D.C.). Journal of Optimiza-
tion Theory and Applications 11, 4 (1973), 323–334.

[16] Hestenes, M. R., and Stiefel, E. Methods of conjugate gradients for solving linear systems.
Journal of Research of the National Bureau of Standards 49 (1952), 409–436.

[17] Karypis, G., and Kumar, V. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing 20, 1 (1999), 359–392.

[18] Ladisch, H., Schulz, A., and Bauer, H. Heat transfer measurements on a turbine airfoil with
pressure side separation. ASME Conference Proceedings 2009, 48845 (2009), 783–793.

[19] Lartigue, G., Meier, U., and Bérat, C. Experimental and numerical investigation of self-
excited combustion oscillations in a scaled gas turbine combustor. Applied Thermal Engineering
24, 11-12 (2004), 1583–1592.

[20] Lutum, E., and Cottier, F. Aerothermal predictions on a highly loaded turbine blade including
effects of flow separation. In 9th European Turbomachinery Conference (Istanbul, 2011), I. F.
of Mechanical Engineering, Ed.

[21] MacLachlan, S. P., Tang, J. M., and Vuik, C. Fast and robust solvers for pressure-correction
in bubbly flow problems. Journal of Computational Physics 227 (2008), 9742–9761.

[22] Meier, W., Weigand, P., Duan, X. R., and Giezendanner-Thoben, R. Detailed charac-
terization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combustion
and Flame 150, 1-2 (July 2007), 2–26.

[23] Morgan, R., and Wilcox, W. Deflated iterative methods for linear equations with multiple
right-hand sides.

[24] Moureau, V., Bérat, C., and Pitsch, H. An efficient semi-implicit compressible solver for
Large-Eddy Simulations. Journal of Computational Physics 226 (2007), 1256–1270.

[25] Moureau, V., Domingo, P., and Vervisch, L. Design of a massively parallel CFD code for
complex geometries – Une algorithmique optimisée pour le supercalcul appliquée à la mécanique
des fluides numérique. Comptes-Rendus de Mécanique (2009).

[26] Moureau, V., Minot, P., Bérat, C., and Pitsch, H. A ghost-fluid method for Large-Eddy
Simulations of premixed combustion in complex geometries. Journal of Computational Physics
211 (2007), 600–614.

[27] Nabben, R., and Vuik, C. A comparison of deflation and coarse grid correction applied to
porous media flow. SIAM Journal on Numerical Analysis (2004).

[28] Nabben, R., and Vuik, C. A comparison of deflation and the balancing preconditioner. SIAM
Journal on Scientific Computing 27, 5 (2006), 1742–1759.

[29] Nicolaides, R. A. Deflation of conjugate gradients with applications to boundary value prob-
lems. SIAM Journal on Numerical Analysis 24, 2 (April 1987).

35

[30] Parks, M. L., Sturler, E. D., Mackey, G., Johnson, D. D., and Maiti, S. Recycling
krylov subspaces for sequences of linear systems. Tech. rep., SIAM J. Sci. Comput, 2004.

[31] Pellegrini, F. Distillating knowledge about SCOTCH. In Combinatorial Scientific Computing
(Dagstuhl, Germany, 2009), U. Naumann, O. Schenk, H. D. Simon, and S. Toledo, Eds., no. 09061
in Dagstuhl Seminar Proceedings, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[32] Reid, J. K. On the method of conjugate gradients for the solution of large sparse systems of
linear equations. Large Sparse Sets of Linear Equations (London and New York) (1971), 231–254.

[33] Rivara, M. C. Mesh refinement processes based on the generalized bisection of simplices. SIAM
Journal on Numerical Analysis 21 (1984).

[34] Roux, S., Lartigue, G., Poinsot, T., Meier, U., and Bérat, C. Studies of mean and
unsteady flow in a swirled combustion using experiments, acoustic analysis and large-eddy simu-
lations. Combustion and Flame 141 (2005), 40–54.

[35] Saad, Y., Yeung, M., Erhel, J., and Guyomarc’h, F. A deflated version of the conjugate
gradient algorithm. SIAM Journal on Scientific Computing 21 (2000), 1909–1926.

[36] Schmidt, E. Title unknown. Rendiconti del Circolo Mathematico di Palermo 25 (1908), 53–77.

[37] Shewchuk, J. R. An introduction to the conjugate gradient method without the agonizing pain.
Available at http://www.cs.cmu.edu/q̃uake-papers/painless-conjugate-gradient.pdf, 1994.

[38] Sleijpen, G. L., and Fokkema, D. R. BiCGStab(L) for linear equations involving unsymmetric
matrices with complex spectrum. Electronic Transactions on Numerical Analysis 1 (September
1993), 11–32.

[39] Stiefel, E. Über einige methoden der relaxationsrechnung. Zeitschrift für Angewandte Mathe-
matik und Physik 3, 1 (1952), 1–33.

[40] Tang, J., Nabben, R., Vuik, C., and Erlangga, Y. Comparison of two-level preconditioners
derived from deflation, domain decomposition and multigrid methods. SIAM Journal on Scientific
Computing 39 (2009), 340–370.

[41] Trottenberg, U., Oosterlee, C. W., and Schuller, A. Multigrid. Academic Press, 2001.

[42] Vermolen, F. J., Vuik, C., and Segal, A. Deflation in preconditioned conjugate
gradient methods for finite element problems. In DIAM Annual Reports, available at
http://ta.twi.tudelft.nl/TWA Reports/02/02-10new.pdf (2002).

[43] Vorst, H. A. V. D. Bi-CGSTAB : A fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM Journal on Scientific Computing 13 (1992), 631–
644.

[44] Vorst, H. A. V. D. Parallel iterative solution methods for linear systems aris-
ing from discretized PDE’s. In Lecture Notes on Parallel Iterative Methods for dis-
cretized PDE’s. AGARD Special Course on Parallel Computing in CFD, available from
http://www.math.ruu.nl/people/vorst/agard.ps.gz (1995).

36

