User:Domingo

From www.coria-cfd.fr
Revision as of 15:16, 28 January 2014 by Domingo (Talk | contribs) (Recent Publications)

Jump to: navigation, search

Personal Information

Pascale Domingo

Pascale Domingo
Directrice de recherche CNRS

Office: INSA/Ma.B.R1
email: domingo@coria.fr
Tel: +33 (0)2 32 95 97 93

Lab Address

CORIA
Avenue de l'Université - BP 12
76801 Saint Etienne du Rouvray
Tel: +33 (0)2 32 95 97 93
Fax: +33 (0)2 32 95 97 82

Research Activities

  • Numerical Modelling of turbulent reactive flows

Teaching Activities

  • Direct and Large Eddy Simulation - MASTER EFE Rouen (10h)

Background

  • 1991: PhD University of Rouen
  • 1992: Post-Doc, Stanford Aeronautics and Astronautics department

Reviewing activities

  • Combustion and Flame, Journal of Fluid Mechanics, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion,

AIAA Journal , Fuel, Combustion Science and Technology

Recent Publications

  1. S. Nambully, P. Domingo, V. Moureau, L. Vervisch (in press) A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame.
  2. S. Nambully, P. Domingo, V. Moureau, L. Vervisch (in press) A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame.
  3. B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret (2014) Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel, 118: 291-299, DOI 10.1016/j.fuel.2013.10.070.
  4. G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200. DOI 10.1007/s10494-013-9520-6.
  5. M. Belhi, P. Domingo, P. Vervisch (2013) Modeling of the Effect of DC and AC Electric Fields on the Stability of a Lifted Diffusion Methane/Air Flame, Combustion Theory and Modelling, 17(4), pp. 749-787(39)http://dx.doi.org/10.1080/13647830.2013.802415
  6. C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68 [1]
  7. C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932. [2]
  8. G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11), pp. 3358-3371. [3]
  9. N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159(1), pp. 336-352.2012 [4]
  10. G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame 158(10): 2009-2016. [5]
  11. V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling, Combust. Flame 158(7): 1340-1357 [6]
  12. V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2/3): 141-148.
  13. K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss Combust. Theory and Modelling 14(4): 541-570.
  14. M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of an electric field on flame stability , Combustion and Flame, 157(12): 2286-2297
  15. D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion Exp. in Fluids 49:267-278.
  16. L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion Combust. Flame 157(4): 778-789.
  17. V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.
  18. P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61.
  19. G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.
  20. G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.
  21. D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088.
  22. J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266.
  23. G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.
  24. J. Galpin, C. Angelberger, A. Naudin, L. Vervisch (2008) Large-Eddy Simulation of H2-air auto-ignition using tabulated detailed chemistry J. of Turbulence 9(13).
  25. P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.

Ph.D. Graduates

- (*) indicates Ph.D. with co-advisor

  • Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003.
  • Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007.
  • Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008.
  • Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi », 2008.
  • Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010.
  • Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010.
  • Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011.
  • Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011.
  • Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013.
  • Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013.