Archer

From www.coria-cfd.fr
Jump to: navigation, search

Archer.png


OBJECTIVE: Liquid/Gaz Interface Simulations

Imag1.png


Describe the interface motion precisely Fleche vert.png Level Set Method


Handle jump conditions at the interface without artificial smoothing Fleche vert.png Ghost Fluid Method


Respect mass conservation Fleche vert.png VOF Method


Solve incompressible Navier Stokes equations Fleche vert.png Projection Method




Fleche roueg.png Archer is a 3D incompressible Navier Stokes solver with Level Set-Ghost Fluid-VOF coupling and MPI parallelization


NUMERICS

  • Cartesian mesh
  • Mac grid (velocities on cell boundaries)
  • WENO 5 scheme for convective terms, Adams Bashforth or RK3 or split algorithm in time
  • Multigrid algorith for preconditionning Conjugate Gradient Method in Poisson equation solver
  • Ghost Fluid method for variable discontinuities at the interface
  • CLSVOF for mass conservation
  • MPI parallelization


UNDER DEVELOPMENT

  • Immersed boundaries
  • Adaptive mesh refinement
  • Coupling with Lagrangian solver
  • New convection scheme (modified Rudman's method)

GALLERY

Turbulent jet

Jet 2048.jpg


Diesel type Jet Atomization : Diameter: 100µm, Liquid velocity 100 ms-1, Turbulence 5%, gas velocity: 0 ms-1, =696 kgm-3, =25 kgm-3

=1.210-3kgm-1s-1, =10-5kgm-1s-1, =0.06Nm-1 Numerical simulation by coupling Level Set / VOF / Ghost fluid methods

Mesh : 256x256x2048 (130 millions points) MPI parallelization 128 procs.


Triple disk injector

Mesh intern LES.png
Velocity.png
Triple.png


  • Coupling between internal flow simulations and DNS of primary breakup
  • Radius of the jet exit: 90 microns
  • Mesh 256x1024x1024 (~270 millions) dx~1.44 micron
  • ~3000 nodes on the (half) jet exit
  • 2048 procs
  • Triple.avi




Liquid/Gas mixing layer

thumb
Couche2.png
Nappe.png
  • Air/water mixing layer
  • 30m/s in air, 0.3 in water
  • Grid is 512x512x1024 nodes
  • Mesh size equals 48 µm.
  • 2048 procs, 20 hours for 3500 time steps; Simulation on 70000 time steps, dt~=10-6 s




Air assisted atomization

0193.jpeg
  • Air/water Jet « Marmottant » Modified Rudman's method two grids
  • Ugas=35m/s and Uliq=0.2m/s
  • =1,2 kg/m3 =1000 kg/m3
  • Lx=45.6mm (4mm+1.7mm)x8 that is 4 the « jet +gas » diameter
  • Grid: 256x256x256,(512x512x512 for level set and VOF, mesh is 90µm)
  • 1024 procs on Curie, 12h wall-clock for 5000 time steps.
  • Simulation is 250000 time steps.
  • Marmotte.avi

2D gas/liquid shear layer

9 11.jpeg
  • M=^2 / ^2 = 16
  • Ugas=30 m/s Uliq=0.26 m/s
  • =1,2 kg/m3 =1000 kg/m3
  • Lx=80mm, Ly=40 mm 10mm water + 10mm air + 20mm quiet
  • Grid: 1024x512(that is 2048x1024 level set and VOF, mesh is 40 µm)
  • 512 procs on Curie
  • 18h wall clock for 100000 time steps.
  • Simulation on 2 000 000 time steps
  • 2Dliquid_shear_layer.avi



Air assisted atomization

Ite304.jpg
  • Air/water Jet « Marmottant » RUDMAN-TYPE Technique with one grid
  • Ugas=22.6m/s and Uliq=0.27m/s
  • =1,2 kg/m3 =1000 kg/m3
  • Lx=34.2mm (4mm+1.7mm)x6 that is 3 x the « jet +gas » diameter
  • Grid: 256x256x256,(mesh is 134µm)
  • 512 procs on Curie, 12h wall-clock for 30000 time steps.
  • Grid: 512x512x512
  • Grid: 512x512x1024
  • 8192 procs on TURING, 16h wall clock for 6000 time steps.
  • Marmotte.avi

Air assisted atomization

Im1000.jpg
  • Same configuration
  • Initial boundary layers included
  • Grid:512x512x1024
  • Oct_15_2015.avi
  • Helicoïdal behaviourin simulations (experimentally observed)
  • helicoid.avi