Difference between revisions of "User:Domingo"

From www.coria-cfd.fr
Jump to: navigation, search
(Recent Publications)
(Ph.D. Graduates)
(47 intermediate revisions by the same user not shown)
Line 4: Line 4:
  
 
Pascale Domingo<br />
 
Pascale Domingo<br />
Chargée de recherche CNRS
+
Directrice de recherche CNRS
  
 
Office: INSA/Ma.B.R1<br />
 
Office: INSA/Ma.B.R1<br />
Line 23: Line 23:
 
== '''Teaching Activities''' ==
 
== '''Teaching Activities''' ==
  
* Direct and Large Eddy Simulation - MASTER EFE Rouen (10h)
+
* Direct and Large Eddy Simulation - INSA de Rouen (15 h)
 +
* Modélisation de la turbulence - Master EFE, Université de Rouen (10 h)
  
 
== '''Background''' ==
 
== '''Background''' ==
Line 30: Line 31:
  
 
== '''Reviewing activities''' ==
 
== '''Reviewing activities''' ==
* Journal of Fluid Mechanics, Combustion and Flame, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion, Fuel, Comptes Rendus Académie des Sciences
+
* Combustion and Flame, Journal of Fluid Mechanics, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion,
== '''Recent Publications''' ==
+
AIAA Journal , Fuel, Combustion Science and Technology
* Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modelling V. Moureau, P. Domingo, L. Vervisch (2010) From Large-Eddy Simulation to Direct, Combustion and Flame, doi:10.1016/j.combustflame.2010.12.004
+
 
* Direct numerical simulation of the effect of  an electric field on flame stability M. Belhi, P. Domingo, P. Vervisch (2010), Combustion and Flame, 157(12): 2286-2297
+
== '''Publications ''' ==  
* Large-Eddy Simulation of forced ignition of an annular Bluff-body burner V. Subramanian, P. Domingo, L. Vervisch, (2010), Combustion and  Flame, 157(3): 579-601.
+
https://orcid.org/0000-0001-5658-0604
* Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames G. Godel, P. Domingo , L. Vervisch (2009), Proceedings of the Combustion Institute, Vol. 32, pp 1555-1561
+
# H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2023) A self-consistent extension of flamelet theory for partially premixed combustion, Combust. Flame. 255: 112911.
* P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow, Combustion and Flame, 152(3), pp. 415-432
+
# Z. Nikolaou, L. Vervisch, P. Domingo (2023) An optimisation framework for the development of explicit discrete forward and inverse filters, Comput. Fluids. 255: 105840.
* Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows, Journal of Computational Physics, 227(10), pp. 5105-5143.
+
# H.-T. Nguyen, C. Barnaud, P. Domingo, P.-D. Nguyen, L. Vervisch (2023) Large-Eddy Simulation of flameless combustion with neural-network driven chemistry, Application Energy Combust. Sci. 14:100126.
 +
# P. Domingo, L. Vervisch (2023) Recent developments in DNS of Turbulent Combustion, Proc. Combust. Inst. (39,4): 2055–2076.
 +
# B. Franzelli, L. Tardelli, M. Stöhr, K.P. Geigle, P Domingo (2023) Assessment of LES of intermittent soot production in an aero-engine model combustor using high-speed measurements, Proc. Combust. Ins.(39,4): 4821-4829.
 +
# E. Yhuel, G. Ribert, P. Domingo (2023) Numerical simulation of laminar premixed hydrogen-air flame/shock interaction in semi-closed channel, Proc. Combust. Inst. (39,3): 3021 - 3029.
 +
# L. Vervisch, G. Lodato, P. Domingo (2023) High-order polynomial approximations for solving non-inertial particle size density in flames, Proc. Combust. Inst. 39: 5385–5393.
 +
# Z. Nikolaou, L. Vervisch, P. Domingo (2022) Criteria to switch from tabulation to neural networks in computational combustion, Combust. Flame 246: 112425.
 +
# Y. Huang, C. Jiang, K. Wan, Z. Gao, L. Vervisch, P. Domingo, Y. He, Z. Wang, C. Lee (2022) Prediction of ignition delay times of jet A-1/hydrogen fuel mixture using machine learning, Aerospace Science and Technology. 127: 107675.
 +
# M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf (2022) A conservative Euler-Lagrange decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, J. Comput. Phys. 464: 111216.
 +
#  P. Domingo, L. Vervisch (2022) Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes, Combust. Flame. 239: 111706.
 +
# H.-T. Nguyen, P. Domingo, L. Vervisch, P.-D. Nguyen (2021) Machine learning for integrating combustion chemistry in numerical simulations, Energy & AI 5:100082.
 +
# K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side- wall effects, Proc. Combust. Inst, 38(2): 2825–2833.
 +
# A. Seltz, P. Domingo, L. Vervisch (2021) Solving the population balance equation for non-inertial particles dynamics using PDF and neural networks: Application to a sooting flame, Phys. Fluids. 33, 013311.
 +
# J. Ruan, G. Ribert, P. Domingo (2021) Stabilization and extinction mechanisms of flames in cavity flameholder scramjets ''Combust. Theory Model.'' (25,2): 193 - 207. <small> DOI: 10.1080/13647830.2020.1845806 [http://dx.doi.org/10.1080/13647830.2020.1845806 link].</small>
 +
# J. Ruan, L. Bouheraoua, P. Domingo, G. Ribert (2021) Simulation of a Scramjet Combustor: A Priori Study of Thermochemistry Tabulation Techniques ''Flow, Turbulence and Combustion''  (106): 1241 - 1276. <small> DOI: 10.1007/s10494-020-00184-4 </small>
 +
# K. Wan, L. Vervisch, Z. Gao, P. Domingo, C. Jiang, Z. Wang, J. Xia, Y. Liu, K. Cen (2020) Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion, Applications in Energy and Combustion Science.1-4: 100009.
 +
# K. Wan, L. Vervisch, C. Jianga, P. Domingo, Z. Gao, J. Xia, Z. Wang (2020) Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms, Energy 211: 118565.
 +
# K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combust. Flame 220: 119-129.
 +
# K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. Barlow, C. Hasse (2020) Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements, Combust. Flame 219: 268-274.
 +
# A. Scholtissek, S. Popp, S. Hartl, H. Olguin, P. Domingo, L. Vervisch, C. Hasse (2020) Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates, Combust. Flame 218: 205-217.
 +
# A. Bouaniche, J. Yon,  P.  Domingo and L. Vervisch (2020) Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach, Flow Turbulence and Combust. 104:753-775.
 +
# L. J. Ruan, P. Domingo, G. Ribert (2020) Analysis of combustion modes in a cavity based scramjet. Combust. Flame.215: 228-251. [https://doi.org/10.1016/j.combustflame.2020.01.034 link]
 +
# A. Bouaniche, L. Vervisch, P. Domingo (2019) A hybrid stochastic/fixed-sectional method for solving the population balance equation, Chem. Eng. Sci. 209: 115198.
 +
# A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou (2019) Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks, Combust. Flame. 210: 71-82. https://www.sciencedirect.com/science/article/pii/S0010218019303773?via%3Dihub
 +
# A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame. 207: 342-355.
 +
# K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion, Fuel Processing Technology. 193:19-30.
 +
# A. Bouaniche, N. Jaouen, P. Domingo, L. Vervisch (2019) Vitiated high Karlovitz n-decane/air turbulent flames: Scaling laws and micro-mixing modeling analysis, Flow Turbulence and Combust., [https://rdcu.be/bdFSk]
 +
# K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on sodium emissions in pulverized- coal flames, Fuel. 250: 315-326.
 +
# B. Duboc, G. Ribert, P. Domingo (2019) Hybrid transported-tabulated chemistry for partially premixed combustion, Computers Fluids (179): 206 - 227.
 +
#:<small> DOI: 10.1016/j.compfluid.2018.10.019 [https://www.sciencedirect.com/science/article/pii/S0045793018308016?via%3Dihub link]</small>
 +
# A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst. <small> DOI: 10.1016/j.proci.2018.06.168 </small>
 +
# K. Wan, L. Vervisch, J. Xia, P. Domingo, Z. Wang, Y. Liu, K. Cen (2019) Alkali metal emissions in early stage of a pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation, Proc. Combust. Inst.<small> DOI: 10.1016/j.proci.2018.06.119.</small>
 +
# G. Ribert, P. Domingo, L. Vervisch (2019) Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames, ''Proc. Combust. Inst.'' ''(37,2)''': 2345 - 2351.
 +
#:<small> DOI: 10.1016/j.proci.2018.07.054 [https://www.sciencedirect.com/science/article/pii/S1540748918304723 link].</small>
 +
# B. Duboc, G. Ribert, P. Domingo (2019) Evaluation of chemistry models on methane/air edge flame simulation, ''Proc. Combust. Inst.'' '''(37,2)''': 1691 - 1698.
 +
#:<small> DOI: 10.1016/j.proci.2018.05.053 [https://www.sciencedirect.com/science/article/pii/S1540748918300543 link].</small>
 +
# C. Locci, L. Vervisch, B. Farcy, P. Domingo, N. Perret (2018) Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling, Flow Turbulence and Combust., 100(2): 301-340.
 +
# B. Duboc, G. Ribert, P. Domingo (2018) Description of kerosene / air combustion with hybrid transported-tabulated chemistry, ''Fuel''  '''(233)''': 146 - 158.<small> DOI: 10.1016/j.fuel.2018.06.014 [https://www.sciencedirect.com/science/article/pii/S0016236118310342 link]</small>
 +
# F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, 180:321-339.
 +
# F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame, 180:340-350.
 +
# N. Jaouen, L. Vervisch, P. Domingo (2017) Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36(3): 3321-3330.
 +
# P. Domingo, L. Vervisch (2017) DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177: 109-122.
 +
# L. Bouheraoua, P. Domingo, G. Ribert (2017) Large Eddy Simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base, Combust. Flame,  (179): 199 - 218. [http://www.sciencedirect.com/science/article/pii/S0010218017300202 link]
 +
# G. Ribert, X. Petit, P. Domingo (2017) High-pressure methane-oxygen flames. Analysis of sub-grid scale contributions in filtered equations of state, J. Supercritical Fluids, (121): 78 - 88. [http://www.sciencedirect.com/science/article/pii/S0896844616302765 link]
 +
# N. Jaouen, L. Vervisch, P. Domingo, G. Ribert (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem, Combust. Flame,  (175): 60 - 79. [http://www.sciencedirect.com/science/article/pii/S0010218016302541 link]
 +
# B. Farcy, L. Vervisch, P. Domingo, N. Perret (2016) Reduced-order modeling for the control of selective non-catalytic reduction (SNCR) of nitrogen monoxide, AIChE Journal,  62(3): 928-938..
 +
#  L. Cifuentes, C. Dopazo, J. Martin, C. Jimenez, P. Domingo, L. Vervisch (2016) Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame, Flow Turbulence and Combust., 96(2): 535-546.
 +
# B. Farcy, L. Vervisch, P. Domingo (2016) Large Eddy Simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units, Chemical Engineering Science, 139:285-303.
 +
# A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni, L.-E. Eriksson (2016) Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combust. Sci. Tech. 188(1): 21-39.
 +
# G. Lodier, P. Domingo, L. Vervisch (2015) Quantification of the pre-ignition front propagation in DNS of rapidly compressed mixture, Flow. Turbulence and Combustion, 94(1): 219-235.
 +
# L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2015) Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame, Proc. Combust. Inst., 35(2): 1295-1303.
 +
#  P. Domingo, L. Vervisch (2015) Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, Proc. Combust. Inst., 35(2): 1349-1357.
 +
# X. Petit, G. Ribert, P. Domingo (2015) Framework for real-gas compressible reacting flows with tabulated thermochemistry, J. Supercritical Fluids (101).
 +
# B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret, (2014)  Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel,  118: 291-299,
 +
# S. Nambully, P. Domingo, V. Moureau, L. Vervisch  A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame, 161(7): 1756-1774.
 +
# S. Nambully, P. Domingo, V. Moureau, L. Vervisch  A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame, 161(7): 1775-1791.
 +
# G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200. DOI 10.1007/s10494-013-9520-6.
 +
# M. Belhi, P. Domingo, P. Vervisch (2013) Modeling of the Effect of DC and AC Electric Fields  on the Stability of a Lifted Diffusion Methane/Air Flame, Combustion Theory and Modelling, 17(4), pp. 749-787(39)http://dx.doi.org/10.1080/13647830.2013.802415
 +
# X. Petit, G. Ribert, P. Domingo, G. Lartigue (2013) Large-eddy simulation of supercritical fluid injection, ''J. Supercritical Fluids'' '''(84)''': 61 - 73. doi:10.1016/j.supflu.2013.09.011 [http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-406086495&_sort=r&_st=13&view=c&_acct=C000032441&_version=1&_urlVersion=0&_userid=1071190&md5=1be41adf80142fdc4879c0665a695946&searchtype=a link].
 +
# C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68 [http://dx.doi.org/10.1007/s10494-012-9421-0]
 +
# C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932. [http://dx.doi.org/10.1016/j.crme.2012.10.039]
 +
# G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11), pp. 3358-3371. [http://dx.doi.org/10.1016/j.combustflame.2012.07.006]
 +
# N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159(1), pp. 336-352.2012 [http://dx.doi.org/doi:10.1016/j.combustflame.2011.06.005]
 +
# G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame 158(10): 2009-2016. [http://dx.doi.org/doi:10.1016/j.combustflame.2011.03.011]
 +
# V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling, Combust. Flame 158(7): 1340-1357 [http://dx.doi.org/doi:10.1016/j.combustflame.2010.12.004]
 +
# V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2/3): 141-148.
 +
# K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss, Combust. Theory and Modelling 14(4): 541-570.
 +
# M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of  an electric field on flame stability , Combustion and Flame, 157(12): 2286-2297
 +
# D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion, Exp. in Fluids 49:267-278.
 +
# L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and   mesh quality criterion, Combust. Flame 157(4): 778-789.
 +
# V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.
 +
# P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61.
 +
# G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.
 +
# G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.
 +
# D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088.
 +
#  J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266.
 +
# G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.
 +
# P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.
 +
#  P. Domingo, L. Vervisch (2007) DNS of partially premixed flame propagating in a turbulent rotating flow, Proceedings of the Combustion Institute, Vol. 31, pp 1657-1664.
 +
# L. Vervisch, P. Domingo (2006) Two recent developments in numerical simulation of premixed and partially premixed turbulent flame, C. R. Mecanique, 334 (8/9), pp. 523-530.
 +
# C. Péra, J. Réveillon, L. Vervisch, P. Domingo (2006) Modeling subgrid scale mixture fraction variance  in LES of evaporating spray, Combustion and  Flame, Vol.146(4).
 +
# P. Domingo, L. Vervisch, S. Payet and R. Hauguel, (2005) DNS of a Premixed Turbulent V-Flame and LES of a Ducted-Flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry, Combustion and  Flame}, 143(4), pp. 566-586.
 +
# K.N.C. Bray, P. Domingo, L. Vervisch, (2005) The role of progress variable in models for partially premixed turbulent combustion, Combustion and  Flame, 141(4), pp. 431-437.
 +
# P. Domingo, L. Vervisch, J. Réveillon, (2005) DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air, Combustion and Flame, 140(3), pp. 172-195.
 +
# R. Hauguel, L. Vervisch, P. Domingo (2005) DNS of premixed turbulent V-Flame: coupling spectral and finite difference methods, C. R. Mecanique , 333 (1), pp.~95-102.
 +
L. Vervisch, R. Hauguel, P. Domingo, M. Rullaud (2004) Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flames and RANS of jet-flame, Journal of turbulence, 5(4), pp. 1-36.
 +
# P. Domingo, L. Vervisch, K. N. C. Bray (2002) Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, 6(4), pp. 529-551.
 +
#  P. Domingo, K. N. C. Bray (2000) Laminar Flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combustion and Flame, Vol 121, pp 555-74.
 +
# P. Domingo, T. Benazzouz (2000) Direct numerical simulation  and modeling of a nonequilibrium turbulent plasma, AIAA Journal, Vol. 38, No. 1, pp.  73-78.
 +
# A. Bourdon, A. Leroux, P. Domingo, P. Vervisch (1999) Experiment-modeling comparison in a nonequilibrium supersonic air nozzle flow, Journal of Thermophysics and Heat Tranfer, Vol. 13, No. 1, pp. 68-75.
 +
# P. Domingo, L. Vervisch  (1996) Triple flames and partially premixed combustion in autoignition of nonpremixed turbulent mixtures, Proceedings of the Combustion Institute}, pp. 223-240.
 +
# L. Guichard, L. Vervisch, P. Domingo (1995) Two-dimensional weak-shock vortex interaction in a mixing zone, AIAA Journal, Vol 33, No 10, pp. 1797-802.
 +
#  P. Domingo, A. Bourdon, P. Vervisch (1995) Study of a low pressure nitrogen plasma jet", Physics of Plasmas, Vol. 2, no 7, pp. 2853-62.
 +
# P. Domingo, D. Vandromme, P. Vervisch (1992) Modeling of an argon plasma in a boundary layer flow, Journal of thermophysics and heat transfer, Vol 6, No 2, pp. 217-23.
 +
 
 +
== Chapter of Book  (peer-reviewed) ==
 +
#  {{smallcaps| L. Vervisch, P. Domingo, J. Bell.}}, Numerical treatment of turbulent reacting flows (pp: 501-539), Numerical Methods in Turbulence Simulation, R. Moser (Ed), Elsevier, ISBN 978-03-239-1144-3, (2022).
 +
# {{smallcaps| Domingo, P., Nikolaou Z., Seltz, A., Vervisch, L.}}, From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling (pp: 215-232), Data analysis for direct numerical simulation of turbulent combustion, H. Pitsch, A. Attili (Eds), 292 pages, Springer, ISBN 978-3-030-44718-2, (2020).
 +
# {{smallcaps| G. Ribert, P. Domingo, X. Petit, N. Vallée, J.-B. Blaisot}}, Modelling and simulations of high-pressure practical flows (pp: 629-676), ''AIAA Book Series'': High-Pressure Flows for Propulsion Applications (J. Bellan), Print ISBN 978-1-62410-580-7, (2020).
 +
# {{smallcaps| G. Ribert, D. Taieb, X. Petit, G. Lartigue and P. Domingo}}, Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system, ''Eucass Book Series, Adv. Aerospace Sci., Prog. Propul. Phys.'' '''(4)''': 205 - 226 Print ISBN 978-2-7598-0876-2, (2013).
 +
 
 +
== '''Ph.D. Graduates''' ==
 +
 
 +
- (*) indicates Ph.D. with co-advisor
 +
 
 +
* Huu-Tri Nguyen*, ”Numerical modeling and simulation of steel gases under flameless combustion", 2022.
 +
* Camille Barnaud*, ”Méthode avancée de prototypage virtuel pour le dimensionnement d’un ensemble lance-tuyère avec prise en compte des transferts thermiques", 2022.
 +
* Andréa Seltz*, ”Application of deep learning to turbulent combustion modeling of real jet fuel for the numerical prediction of particulate emissions", 2020.
 +
* Loïc Ruan*, ”Simulation aux grandes échelles de la combustion dans les scramjets”, 2019.
 +
* Alexandre Bouaniche*,"A hybrid stochastic-sectional method for the simulation of soot particle size distributions", 2019.
 +
* Bastien Duboc*, «Modélisation hybride de la chimie pour la simulation numérique de la combustion», 2017.
 +
* Nicolas Jaouen*, «An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion», 2017.
 +
* Dorian Midou*, «Optimisation d'une lance de charbon pulvérisé», 2017.
 +
* Benjamin Farcy* «Analyse des mécanismes de destruction non catalytique des oxydes d'azote (DENOX) et application aux incinérateurs », 2015.
 +
* Lisa Bouhearouha* «Simulation aux grandes échelles de la combustion supersonique », 2014.
 +
* Xavier Petit* «Analyse de l’interaction cinétique chimique/turbulence dans une flamme cryotechnique LOX/CH4 », 2014.
 +
* Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013.
 +
* Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013.
 +
* Memdouh Belhi  «  Simulation Numérique de l’Effet de Champ Electrique sur la Stabilité des Flammes de Diffusion », 2012.
 +
* Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011.
 +
* Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011.
 +
* Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010.
 +
* Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010.
 +
* Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi »,  2008.
 +
* Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008.
 +
* Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007.
 +
* Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003.
 +
* Tewfik Benazzouz «Modélisation numérique de plasmas en écoulement turbulent, application au cas de l'argon » 1999.
 +
* Alain Leroux « Modélisation d'écoulements supersoniques hors-équilibre chimique et thermique », 1997.
 +
* Anne Bourdon* « Les modélisations physiques d'un écoulement supersonique de plasma d'azote basse pression », 1995.

Revision as of 16:39, 2 September 2023

Personal Information

Pascale Domingo

Pascale Domingo
Directrice de recherche CNRS

Office: INSA/Ma.B.R1
email: domingo@coria.fr
Tel: +33 (0)2 32 95 97 93

Lab Address

CORIA
Avenue de l'Université - BP 12
76801 Saint Etienne du Rouvray
Tel: +33 (0)2 32 95 97 93
Fax: +33 (0)2 32 95 97 82

Research Activities

  • Numerical Modelling of turbulent reactive flows

Teaching Activities

  • Direct and Large Eddy Simulation - INSA de Rouen (15 h)
  • Modélisation de la turbulence - Master EFE, Université de Rouen (10 h)

Background

  • 1991: PhD University of Rouen
  • 1992: Post-Doc, Stanford Aeronautics and Astronautics department

Reviewing activities

  • Combustion and Flame, Journal of Fluid Mechanics, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion,

AIAA Journal , Fuel, Combustion Science and Technology

Publications

https://orcid.org/0000-0001-5658-0604

  1. H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2023) A self-consistent extension of flamelet theory for partially premixed combustion, Combust. Flame. 255: 112911.
  2. Z. Nikolaou, L. Vervisch, P. Domingo (2023) An optimisation framework for the development of explicit discrete forward and inverse filters, Comput. Fluids. 255: 105840.
  3. H.-T. Nguyen, C. Barnaud, P. Domingo, P.-D. Nguyen, L. Vervisch (2023) Large-Eddy Simulation of flameless combustion with neural-network driven chemistry, Application Energy Combust. Sci. 14:100126.
  4. P. Domingo, L. Vervisch (2023) Recent developments in DNS of Turbulent Combustion, Proc. Combust. Inst. (39,4): 2055–2076.
  5. B. Franzelli, L. Tardelli, M. Stöhr, K.P. Geigle, P Domingo (2023) Assessment of LES of intermittent soot production in an aero-engine model combustor using high-speed measurements, Proc. Combust. Ins.(39,4): 4821-4829.
  6. E. Yhuel, G. Ribert, P. Domingo (2023) Numerical simulation of laminar premixed hydrogen-air flame/shock interaction in semi-closed channel, Proc. Combust. Inst. (39,3): 3021 - 3029.
  7. L. Vervisch, G. Lodato, P. Domingo (2023) High-order polynomial approximations for solving non-inertial particle size density in flames, Proc. Combust. Inst. 39: 5385–5393.
  8. Z. Nikolaou, L. Vervisch, P. Domingo (2022) Criteria to switch from tabulation to neural networks in computational combustion, Combust. Flame 246: 112425.
  9. Y. Huang, C. Jiang, K. Wan, Z. Gao, L. Vervisch, P. Domingo, Y. He, Z. Wang, C. Lee (2022) Prediction of ignition delay times of jet A-1/hydrogen fuel mixture using machine learning, Aerospace Science and Technology. 127: 107675.
  10. M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf (2022) A conservative Euler-Lagrange decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, J. Comput. Phys. 464: 111216.
  11. P. Domingo, L. Vervisch (2022) Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes, Combust. Flame. 239: 111706.
  12. H.-T. Nguyen, P. Domingo, L. Vervisch, P.-D. Nguyen (2021) Machine learning for integrating combustion chemistry in numerical simulations, Energy & AI 5:100082.
  13. K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side- wall effects, Proc. Combust. Inst, 38(2): 2825–2833.
  14. A. Seltz, P. Domingo, L. Vervisch (2021) Solving the population balance equation for non-inertial particles dynamics using PDF and neural networks: Application to a sooting flame, Phys. Fluids. 33, 013311.
  15. J. Ruan, G. Ribert, P. Domingo (2021) Stabilization and extinction mechanisms of flames in cavity flameholder scramjets Combust. Theory Model. (25,2): 193 - 207. DOI: 10.1080/13647830.2020.1845806 link.
  16. J. Ruan, L. Bouheraoua, P. Domingo, G. Ribert (2021) Simulation of a Scramjet Combustor: A Priori Study of Thermochemistry Tabulation Techniques Flow, Turbulence and Combustion (106): 1241 - 1276. DOI: 10.1007/s10494-020-00184-4
  17. K. Wan, L. Vervisch, Z. Gao, P. Domingo, C. Jiang, Z. Wang, J. Xia, Y. Liu, K. Cen (2020) Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion, Applications in Energy and Combustion Science.1-4: 100009.
  18. K. Wan, L. Vervisch, C. Jianga, P. Domingo, Z. Gao, J. Xia, Z. Wang (2020) Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms, Energy 211: 118565.
  19. K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combust. Flame 220: 119-129.
  20. K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. Barlow, C. Hasse (2020) Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements, Combust. Flame 219: 268-274.
  21. A. Scholtissek, S. Popp, S. Hartl, H. Olguin, P. Domingo, L. Vervisch, C. Hasse (2020) Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates, Combust. Flame 218: 205-217.
  22. A. Bouaniche, J. Yon, P. Domingo and L. Vervisch (2020) Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach, Flow Turbulence and Combust. 104:753-775.
  23. L. J. Ruan, P. Domingo, G. Ribert (2020) Analysis of combustion modes in a cavity based scramjet. Combust. Flame.215: 228-251. link
  24. A. Bouaniche, L. Vervisch, P. Domingo (2019) A hybrid stochastic/fixed-sectional method for solving the population balance equation, Chem. Eng. Sci. 209: 115198.
  25. A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou (2019) Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks, Combust. Flame. 210: 71-82. https://www.sciencedirect.com/science/article/pii/S0010218019303773?via%3Dihub
  26. A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame. 207: 342-355.
  27. K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion, Fuel Processing Technology. 193:19-30.
  28. A. Bouaniche, N. Jaouen, P. Domingo, L. Vervisch (2019) Vitiated high Karlovitz n-decane/air turbulent flames: Scaling laws and micro-mixing modeling analysis, Flow Turbulence and Combust., [1]
  29. K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on sodium emissions in pulverized- coal flames, Fuel. 250: 315-326.
  30. B. Duboc, G. Ribert, P. Domingo (2019) Hybrid transported-tabulated chemistry for partially premixed combustion, Computers Fluids (179): 206 - 227.
    DOI: 10.1016/j.compfluid.2018.10.019 link
  31. A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst. DOI: 10.1016/j.proci.2018.06.168
  32. K. Wan, L. Vervisch, J. Xia, P. Domingo, Z. Wang, Y. Liu, K. Cen (2019) Alkali metal emissions in early stage of a pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation, Proc. Combust. Inst. DOI: 10.1016/j.proci.2018.06.119.
  33. G. Ribert, P. Domingo, L. Vervisch (2019) Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames, Proc. Combust. Inst. (37,2)': 2345 - 2351.
    DOI: 10.1016/j.proci.2018.07.054 link.
  34. B. Duboc, G. Ribert, P. Domingo (2019) Evaluation of chemistry models on methane/air edge flame simulation, Proc. Combust. Inst. (37,2): 1691 - 1698.
    DOI: 10.1016/j.proci.2018.05.053 link.
  35. C. Locci, L. Vervisch, B. Farcy, P. Domingo, N. Perret (2018) Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling, Flow Turbulence and Combust., 100(2): 301-340.
  36. B. Duboc, G. Ribert, P. Domingo (2018) Description of kerosene / air combustion with hybrid transported-tabulated chemistry, Fuel (233): 146 - 158. DOI: 10.1016/j.fuel.2018.06.014 link
  37. F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, 180:321-339.
  38. F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame, 180:340-350.
  39. N. Jaouen, L. Vervisch, P. Domingo (2017) Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36(3): 3321-3330.
  40. P. Domingo, L. Vervisch (2017) DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177: 109-122.
  41. L. Bouheraoua, P. Domingo, G. Ribert (2017) Large Eddy Simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base, Combust. Flame, (179): 199 - 218. link
  42. G. Ribert, X. Petit, P. Domingo (2017) High-pressure methane-oxygen flames. Analysis of sub-grid scale contributions in filtered equations of state, J. Supercritical Fluids, (121): 78 - 88. link
  43. N. Jaouen, L. Vervisch, P. Domingo, G. Ribert (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem, Combust. Flame, (175): 60 - 79. link
  44. B. Farcy, L. Vervisch, P. Domingo, N. Perret (2016) Reduced-order modeling for the control of selective non-catalytic reduction (SNCR) of nitrogen monoxide, AIChE Journal, 62(3): 928-938..
  45. L. Cifuentes, C. Dopazo, J. Martin, C. Jimenez, P. Domingo, L. Vervisch (2016) Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame, Flow Turbulence and Combust., 96(2): 535-546.
  46. B. Farcy, L. Vervisch, P. Domingo (2016) Large Eddy Simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units, Chemical Engineering Science, 139:285-303.
  47. A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni, L.-E. Eriksson (2016) Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combust. Sci. Tech. 188(1): 21-39.
  48. G. Lodier, P. Domingo, L. Vervisch (2015) Quantification of the pre-ignition front propagation in DNS of rapidly compressed mixture, Flow. Turbulence and Combustion, 94(1): 219-235.
  49. L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2015) Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame, Proc. Combust. Inst., 35(2): 1295-1303.
  50. P. Domingo, L. Vervisch (2015) Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, Proc. Combust. Inst., 35(2): 1349-1357.
  51. X. Petit, G. Ribert, P. Domingo (2015) Framework for real-gas compressible reacting flows with tabulated thermochemistry, J. Supercritical Fluids (101).
  52. B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret, (2014) Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel, 118: 291-299,
  53. S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame, 161(7): 1756-1774.
  54. S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame, 161(7): 1775-1791.
  55. G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200. DOI 10.1007/s10494-013-9520-6.
  56. M. Belhi, P. Domingo, P. Vervisch (2013) Modeling of the Effect of DC and AC Electric Fields on the Stability of a Lifted Diffusion Methane/Air Flame, Combustion Theory and Modelling, 17(4), pp. 749-787(39)http://dx.doi.org/10.1080/13647830.2013.802415
  57. X. Petit, G. Ribert, P. Domingo, G. Lartigue (2013) Large-eddy simulation of supercritical fluid injection, J. Supercritical Fluids (84): 61 - 73. doi:10.1016/j.supflu.2013.09.011 link.
  58. C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68 [2]
  59. C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932. [3]
  60. G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11), pp. 3358-3371. [4]
  61. N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159(1), pp. 336-352.2012 [5]
  62. G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame 158(10): 2009-2016. [6]
  63. V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling, Combust. Flame 158(7): 1340-1357 [7]
  64. V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2/3): 141-148.
  65. K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss, Combust. Theory and Modelling 14(4): 541-570.
  66. M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of an electric field on flame stability , Combustion and Flame, 157(12): 2286-2297
  67. D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion, Exp. in Fluids 49:267-278.
  68. L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion, Combust. Flame 157(4): 778-789.
  69. V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.
  70. P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61.
  71. G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.
  72. G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.
  73. D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088.
  74. J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266.
  75. G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.
  76. P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.
  77. P. Domingo, L. Vervisch (2007) DNS of partially premixed flame propagating in a turbulent rotating flow, Proceedings of the Combustion Institute, Vol. 31, pp 1657-1664.
  78. L. Vervisch, P. Domingo (2006) Two recent developments in numerical simulation of premixed and partially premixed turbulent flame, C. R. Mecanique, 334 (8/9), pp. 523-530.
  79. C. Péra, J. Réveillon, L. Vervisch, P. Domingo (2006) Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combustion and Flame, Vol.146(4).
  80. P. Domingo, L. Vervisch, S. Payet and R. Hauguel, (2005) DNS of a Premixed Turbulent V-Flame and LES of a Ducted-Flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry, Combustion and Flame}, 143(4), pp. 566-586.
  81. K.N.C. Bray, P. Domingo, L. Vervisch, (2005) The role of progress variable in models for partially premixed turbulent combustion, Combustion and Flame, 141(4), pp. 431-437.
  82. P. Domingo, L. Vervisch, J. Réveillon, (2005) DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air, Combustion and Flame, 140(3), pp. 172-195.
  83. R. Hauguel, L. Vervisch, P. Domingo (2005) DNS of premixed turbulent V-Flame: coupling spectral and finite difference methods, C. R. Mecanique , 333 (1), pp.~95-102.
  84. L. Vervisch, R. Hauguel, P. Domingo, M. Rullaud (2004) Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flames and RANS of jet-flame, Journal of turbulence, 5(4), pp. 1-36.
  85. P. Domingo, L. Vervisch, K. N. C. Bray (2002) Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, 6(4), pp. 529-551.
  86. P. Domingo, K. N. C. Bray (2000) Laminar Flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combustion and Flame, Vol 121, pp 555-74.
  87. P. Domingo, T. Benazzouz (2000) Direct numerical simulation and modeling of a nonequilibrium turbulent plasma, AIAA Journal, Vol. 38, No. 1, pp. 73-78.
  88. A. Bourdon, A. Leroux, P. Domingo, P. Vervisch (1999) Experiment-modeling comparison in a nonequilibrium supersonic air nozzle flow, Journal of Thermophysics and Heat Tranfer, Vol. 13, No. 1, pp. 68-75.
  89. P. Domingo, L. Vervisch (1996) Triple flames and partially premixed combustion in autoignition of nonpremixed turbulent mixtures, Proceedings of the Combustion Institute}, pp. 223-240.
  90. L. Guichard, L. Vervisch, P. Domingo (1995) Two-dimensional weak-shock vortex interaction in a mixing zone, AIAA Journal, Vol 33, No 10, pp. 1797-802.
  91. P. Domingo, A. Bourdon, P. Vervisch (1995) Study of a low pressure nitrogen plasma jet", Physics of Plasmas, Vol. 2, no 7, pp. 2853-62.
  92. P. Domingo, D. Vandromme, P. Vervisch (1992) Modeling of an argon plasma in a boundary layer flow, Journal of thermophysics and heat transfer, Vol 6, No 2, pp. 217-23.

Chapter of Book (peer-reviewed)

  1. L. Vervisch, P. Domingo, J. Bell., Numerical treatment of turbulent reacting flows (pp: 501-539), Numerical Methods in Turbulence Simulation, R. Moser (Ed), Elsevier, ISBN 978-03-239-1144-3, (2022).
  2. Domingo, P., Nikolaou Z., Seltz, A., Vervisch, L., From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling (pp: 215-232), Data analysis for direct numerical simulation of turbulent combustion, H. Pitsch, A. Attili (Eds), 292 pages, Springer, ISBN 978-3-030-44718-2, (2020).
  3. G. Ribert, P. Domingo, X. Petit, N. Vallée, J.-B. Blaisot, Modelling and simulations of high-pressure practical flows (pp: 629-676), AIAA Book Series: High-Pressure Flows for Propulsion Applications (J. Bellan), Print ISBN 978-1-62410-580-7, (2020).
  4. G. Ribert, D. Taieb, X. Petit, G. Lartigue and P. Domingo, Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system, Eucass Book Series, Adv. Aerospace Sci., Prog. Propul. Phys. (4): 205 - 226 Print ISBN 978-2-7598-0876-2, (2013).

Ph.D. Graduates

- (*) indicates Ph.D. with co-advisor

  • Huu-Tri Nguyen*, ”Numerical modeling and simulation of steel gases under flameless combustion", 2022.
  • Camille Barnaud*, ”Méthode avancée de prototypage virtuel pour le dimensionnement d’un ensemble lance-tuyère avec prise en compte des transferts thermiques", 2022.
  • Andréa Seltz*, ”Application of deep learning to turbulent combustion modeling of real jet fuel for the numerical prediction of particulate emissions", 2020.
  • Loïc Ruan*, ”Simulation aux grandes échelles de la combustion dans les scramjets”, 2019.
  • Alexandre Bouaniche*,"A hybrid stochastic-sectional method for the simulation of soot particle size distributions", 2019.
  • Bastien Duboc*, «Modélisation hybride de la chimie pour la simulation numérique de la combustion», 2017.
  • Nicolas Jaouen*, «An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion», 2017.
  • Dorian Midou*, «Optimisation d'une lance de charbon pulvérisé», 2017.
  • Benjamin Farcy* «Analyse des mécanismes de destruction non catalytique des oxydes d'azote (DENOX) et application aux incinérateurs », 2015.
  • Lisa Bouhearouha* «Simulation aux grandes échelles de la combustion supersonique », 2014.
  • Xavier Petit* «Analyse de l’interaction cinétique chimique/turbulence dans une flamme cryotechnique LOX/CH4 », 2014.
  • Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013.
  • Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013.
  • Memdouh Belhi «  Simulation Numérique de l’Effet de Champ Electrique sur la Stabilité des Flammes de Diffusion », 2012.
  • Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011.
  • Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011.
  • Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010.
  • Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010.
  • Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi », 2008.
  • Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008.
  • Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007.
  • Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003.
  • Tewfik Benazzouz «Modélisation numérique de plasmas en écoulement turbulent, application au cas de l'argon » 1999.
  • Alain Leroux « Modélisation d'écoulements supersoniques hors-équilibre chimique et thermique », 1997.
  • Anne Bourdon* « Les modélisations physiques d'un écoulement supersonique de plasma d'azote basse pression », 1995.