Difference between revisions of "User:Domingo"
From www.coria-cfd.fr
(→Recent Publications) |
(→Ph.D. Graduates) |
||
(47 intermediate revisions by the same user not shown) | |||
Line 4: | Line 4: | ||
Pascale Domingo<br /> | Pascale Domingo<br /> | ||
− | + | Directrice de recherche CNRS | |
Office: INSA/Ma.B.R1<br /> | Office: INSA/Ma.B.R1<br /> | ||
Line 23: | Line 23: | ||
== '''Teaching Activities''' == | == '''Teaching Activities''' == | ||
− | * Direct and Large Eddy Simulation - | + | * Direct and Large Eddy Simulation - INSA de Rouen (15 h) |
+ | * Modélisation de la turbulence - Master EFE, Université de Rouen (10 h) | ||
== '''Background''' == | == '''Background''' == | ||
Line 30: | Line 31: | ||
== '''Reviewing activities''' == | == '''Reviewing activities''' == | ||
− | * Journal of Fluid Mechanics | + | * Combustion and Flame, Journal of Fluid Mechanics, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion, |
− | == ''' | + | AIAA Journal , Fuel, Combustion Science and Technology |
− | + | ||
− | + | == '''Publications ''' == | |
− | + | https://orcid.org/0000-0001-5658-0604 | |
− | + | # H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2023) A self-consistent extension of flamelet theory for partially premixed combustion, Combust. Flame. 255: 112911. | |
− | + | # Z. Nikolaou, L. Vervisch, P. Domingo (2023) An optimisation framework for the development of explicit discrete forward and inverse filters, Comput. Fluids. 255: 105840. | |
− | + | # H.-T. Nguyen, C. Barnaud, P. Domingo, P.-D. Nguyen, L. Vervisch (2023) Large-Eddy Simulation of flameless combustion with neural-network driven chemistry, Application Energy Combust. Sci. 14:100126. | |
+ | # P. Domingo, L. Vervisch (2023) Recent developments in DNS of Turbulent Combustion, Proc. Combust. Inst. (39,4): 2055–2076. | ||
+ | # B. Franzelli, L. Tardelli, M. Stöhr, K.P. Geigle, P Domingo (2023) Assessment of LES of intermittent soot production in an aero-engine model combustor using high-speed measurements, Proc. Combust. Ins.(39,4): 4821-4829. | ||
+ | # E. Yhuel, G. Ribert, P. Domingo (2023) Numerical simulation of laminar premixed hydrogen-air flame/shock interaction in semi-closed channel, Proc. Combust. Inst. (39,3): 3021 - 3029. | ||
+ | # L. Vervisch, G. Lodato, P. Domingo (2023) High-order polynomial approximations for solving non-inertial particle size density in flames, Proc. Combust. Inst. 39: 5385–5393. | ||
+ | # Z. Nikolaou, L. Vervisch, P. Domingo (2022) Criteria to switch from tabulation to neural networks in computational combustion, Combust. Flame 246: 112425. | ||
+ | # Y. Huang, C. Jiang, K. Wan, Z. Gao, L. Vervisch, P. Domingo, Y. He, Z. Wang, C. Lee (2022) Prediction of ignition delay times of jet A-1/hydrogen fuel mixture using machine learning, Aerospace Science and Technology. 127: 107675. | ||
+ | # M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf (2022) A conservative Euler-Lagrange decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, J. Comput. Phys. 464: 111216. | ||
+ | # P. Domingo, L. Vervisch (2022) Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes, Combust. Flame. 239: 111706. | ||
+ | # H.-T. Nguyen, P. Domingo, L. Vervisch, P.-D. Nguyen (2021) Machine learning for integrating combustion chemistry in numerical simulations, Energy & AI 5:100082. | ||
+ | # K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side- wall effects, Proc. Combust. Inst, 38(2): 2825–2833. | ||
+ | # A. Seltz, P. Domingo, L. Vervisch (2021) Solving the population balance equation for non-inertial particles dynamics using PDF and neural networks: Application to a sooting flame, Phys. Fluids. 33, 013311. | ||
+ | # J. Ruan, G. Ribert, P. Domingo (2021) Stabilization and extinction mechanisms of flames in cavity flameholder scramjets ''Combust. Theory Model.'' (25,2): 193 - 207. <small> DOI: 10.1080/13647830.2020.1845806 [http://dx.doi.org/10.1080/13647830.2020.1845806 link].</small> | ||
+ | # J. Ruan, L. Bouheraoua, P. Domingo, G. Ribert (2021) Simulation of a Scramjet Combustor: A Priori Study of Thermochemistry Tabulation Techniques ''Flow, Turbulence and Combustion'' (106): 1241 - 1276. <small> DOI: 10.1007/s10494-020-00184-4 </small> | ||
+ | # K. Wan, L. Vervisch, Z. Gao, P. Domingo, C. Jiang, Z. Wang, J. Xia, Y. Liu, K. Cen (2020) Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion, Applications in Energy and Combustion Science.1-4: 100009. | ||
+ | # K. Wan, L. Vervisch, C. Jianga, P. Domingo, Z. Gao, J. Xia, Z. Wang (2020) Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms, Energy 211: 118565. | ||
+ | # K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combust. Flame 220: 119-129. | ||
+ | # K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. Barlow, C. Hasse (2020) Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements, Combust. Flame 219: 268-274. | ||
+ | # A. Scholtissek, S. Popp, S. Hartl, H. Olguin, P. Domingo, L. Vervisch, C. Hasse (2020) Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates, Combust. Flame 218: 205-217. | ||
+ | # A. Bouaniche, J. Yon, P. Domingo and L. Vervisch (2020) Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach, Flow Turbulence and Combust. 104:753-775. | ||
+ | # L. J. Ruan, P. Domingo, G. Ribert (2020) Analysis of combustion modes in a cavity based scramjet. Combust. Flame.215: 228-251. [https://doi.org/10.1016/j.combustflame.2020.01.034 link] | ||
+ | # A. Bouaniche, L. Vervisch, P. Domingo (2019) A hybrid stochastic/fixed-sectional method for solving the population balance equation, Chem. Eng. Sci. 209: 115198. | ||
+ | # A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou (2019) Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks, Combust. Flame. 210: 71-82. https://www.sciencedirect.com/science/article/pii/S0010218019303773?via%3Dihub | ||
+ | # A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame. 207: 342-355. | ||
+ | # K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion, Fuel Processing Technology. 193:19-30. | ||
+ | # A. Bouaniche, N. Jaouen, P. Domingo, L. Vervisch (2019) Vitiated high Karlovitz n-decane/air turbulent flames: Scaling laws and micro-mixing modeling analysis, Flow Turbulence and Combust., [https://rdcu.be/bdFSk] | ||
+ | # K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on sodium emissions in pulverized- coal flames, Fuel. 250: 315-326. | ||
+ | # B. Duboc, G. Ribert, P. Domingo (2019) Hybrid transported-tabulated chemistry for partially premixed combustion, Computers Fluids (179): 206 - 227. | ||
+ | #:<small> DOI: 10.1016/j.compfluid.2018.10.019 [https://www.sciencedirect.com/science/article/pii/S0045793018308016?via%3Dihub link]</small> | ||
+ | # A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst. <small> DOI: 10.1016/j.proci.2018.06.168 </small> | ||
+ | # K. Wan, L. Vervisch, J. Xia, P. Domingo, Z. Wang, Y. Liu, K. Cen (2019) Alkali metal emissions in early stage of a pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation, Proc. Combust. Inst.<small> DOI: 10.1016/j.proci.2018.06.119.</small> | ||
+ | # G. Ribert, P. Domingo, L. Vervisch (2019) Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames, ''Proc. Combust. Inst.'' ''(37,2)''': 2345 - 2351. | ||
+ | #:<small> DOI: 10.1016/j.proci.2018.07.054 [https://www.sciencedirect.com/science/article/pii/S1540748918304723 link].</small> | ||
+ | # B. Duboc, G. Ribert, P. Domingo (2019) Evaluation of chemistry models on methane/air edge flame simulation, ''Proc. Combust. Inst.'' '''(37,2)''': 1691 - 1698. | ||
+ | #:<small> DOI: 10.1016/j.proci.2018.05.053 [https://www.sciencedirect.com/science/article/pii/S1540748918300543 link].</small> | ||
+ | # C. Locci, L. Vervisch, B. Farcy, P. Domingo, N. Perret (2018) Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling, Flow Turbulence and Combust., 100(2): 301-340. | ||
+ | # B. Duboc, G. Ribert, P. Domingo (2018) Description of kerosene / air combustion with hybrid transported-tabulated chemistry, ''Fuel'' '''(233)''': 146 - 158.<small> DOI: 10.1016/j.fuel.2018.06.014 [https://www.sciencedirect.com/science/article/pii/S0016236118310342 link]</small> | ||
+ | # F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, 180:321-339. | ||
+ | # F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame, 180:340-350. | ||
+ | # N. Jaouen, L. Vervisch, P. Domingo (2017) Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36(3): 3321-3330. | ||
+ | # P. Domingo, L. Vervisch (2017) DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177: 109-122. | ||
+ | # L. Bouheraoua, P. Domingo, G. Ribert (2017) Large Eddy Simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base, Combust. Flame, (179): 199 - 218. [http://www.sciencedirect.com/science/article/pii/S0010218017300202 link] | ||
+ | # G. Ribert, X. Petit, P. Domingo (2017) High-pressure methane-oxygen flames. Analysis of sub-grid scale contributions in filtered equations of state, J. Supercritical Fluids, (121): 78 - 88. [http://www.sciencedirect.com/science/article/pii/S0896844616302765 link] | ||
+ | # N. Jaouen, L. Vervisch, P. Domingo, G. Ribert (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem, Combust. Flame, (175): 60 - 79. [http://www.sciencedirect.com/science/article/pii/S0010218016302541 link] | ||
+ | # B. Farcy, L. Vervisch, P. Domingo, N. Perret (2016) Reduced-order modeling for the control of selective non-catalytic reduction (SNCR) of nitrogen monoxide, AIChE Journal, 62(3): 928-938.. | ||
+ | # L. Cifuentes, C. Dopazo, J. Martin, C. Jimenez, P. Domingo, L. Vervisch (2016) Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame, Flow Turbulence and Combust., 96(2): 535-546. | ||
+ | # B. Farcy, L. Vervisch, P. Domingo (2016) Large Eddy Simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units, Chemical Engineering Science, 139:285-303. | ||
+ | # A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni, L.-E. Eriksson (2016) Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combust. Sci. Tech. 188(1): 21-39. | ||
+ | # G. Lodier, P. Domingo, L. Vervisch (2015) Quantification of the pre-ignition front propagation in DNS of rapidly compressed mixture, Flow. Turbulence and Combustion, 94(1): 219-235. | ||
+ | # L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2015) Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame, Proc. Combust. Inst., 35(2): 1295-1303. | ||
+ | # P. Domingo, L. Vervisch (2015) Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, Proc. Combust. Inst., 35(2): 1349-1357. | ||
+ | # X. Petit, G. Ribert, P. Domingo (2015) Framework for real-gas compressible reacting flows with tabulated thermochemistry, J. Supercritical Fluids (101). | ||
+ | # B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret, (2014) Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel, 118: 291-299, | ||
+ | # S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame, 161(7): 1756-1774. | ||
+ | # S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame, 161(7): 1775-1791. | ||
+ | # G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200. DOI 10.1007/s10494-013-9520-6. | ||
+ | # M. Belhi, P. Domingo, P. Vervisch (2013) Modeling of the Effect of DC and AC Electric Fields on the Stability of a Lifted Diffusion Methane/Air Flame, Combustion Theory and Modelling, 17(4), pp. 749-787(39)http://dx.doi.org/10.1080/13647830.2013.802415 | ||
+ | # X. Petit, G. Ribert, P. Domingo, G. Lartigue (2013) Large-eddy simulation of supercritical fluid injection, ''J. Supercritical Fluids'' '''(84)''': 61 - 73. doi:10.1016/j.supflu.2013.09.011 [http://www.sciencedirect.com/science?_ob=ArticleListURL&_method=list&_ArticleListID=-406086495&_sort=r&_st=13&view=c&_acct=C000032441&_version=1&_urlVersion=0&_userid=1071190&md5=1be41adf80142fdc4879c0665a695946&searchtype=a link]. | ||
+ | # C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68 [http://dx.doi.org/10.1007/s10494-012-9421-0] | ||
+ | # C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932. [http://dx.doi.org/10.1016/j.crme.2012.10.039] | ||
+ | # G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11), pp. 3358-3371. [http://dx.doi.org/10.1016/j.combustflame.2012.07.006] | ||
+ | # N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159(1), pp. 336-352.2012 [http://dx.doi.org/doi:10.1016/j.combustflame.2011.06.005] | ||
+ | # G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame 158(10): 2009-2016. [http://dx.doi.org/doi:10.1016/j.combustflame.2011.03.011] | ||
+ | # V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling, Combust. Flame 158(7): 1340-1357 [http://dx.doi.org/doi:10.1016/j.combustflame.2010.12.004] | ||
+ | # V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2/3): 141-148. | ||
+ | # K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss, Combust. Theory and Modelling 14(4): 541-570. | ||
+ | # M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of an electric field on flame stability , Combustion and Flame, 157(12): 2286-2297 | ||
+ | # D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion, Exp. in Fluids 49:267-278. | ||
+ | # L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion, Combust. Flame 157(4): 778-789. | ||
+ | # V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601. | ||
+ | # P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61. | ||
+ | # G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102. | ||
+ | # G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551. | ||
+ | # D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088. | ||
+ | # J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266. | ||
+ | # G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143. | ||
+ | # P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432. | ||
+ | # P. Domingo, L. Vervisch (2007) DNS of partially premixed flame propagating in a turbulent rotating flow, Proceedings of the Combustion Institute, Vol. 31, pp 1657-1664. | ||
+ | # L. Vervisch, P. Domingo (2006) Two recent developments in numerical simulation of premixed and partially premixed turbulent flame, C. R. Mecanique, 334 (8/9), pp. 523-530. | ||
+ | # C. Péra, J. Réveillon, L. Vervisch, P. Domingo (2006) Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combustion and Flame, Vol.146(4). | ||
+ | # P. Domingo, L. Vervisch, S. Payet and R. Hauguel, (2005) DNS of a Premixed Turbulent V-Flame and LES of a Ducted-Flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry, Combustion and Flame}, 143(4), pp. 566-586. | ||
+ | # K.N.C. Bray, P. Domingo, L. Vervisch, (2005) The role of progress variable in models for partially premixed turbulent combustion, Combustion and Flame, 141(4), pp. 431-437. | ||
+ | # P. Domingo, L. Vervisch, J. Réveillon, (2005) DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air, Combustion and Flame, 140(3), pp. 172-195. | ||
+ | # R. Hauguel, L. Vervisch, P. Domingo (2005) DNS of premixed turbulent V-Flame: coupling spectral and finite difference methods, C. R. Mecanique , 333 (1), pp.~95-102. | ||
+ | # L. Vervisch, R. Hauguel, P. Domingo, M. Rullaud (2004) Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flames and RANS of jet-flame, Journal of turbulence, 5(4), pp. 1-36. | ||
+ | # P. Domingo, L. Vervisch, K. N. C. Bray (2002) Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, 6(4), pp. 529-551. | ||
+ | # P. Domingo, K. N. C. Bray (2000) Laminar Flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combustion and Flame, Vol 121, pp 555-74. | ||
+ | # P. Domingo, T. Benazzouz (2000) Direct numerical simulation and modeling of a nonequilibrium turbulent plasma, AIAA Journal, Vol. 38, No. 1, pp. 73-78. | ||
+ | # A. Bourdon, A. Leroux, P. Domingo, P. Vervisch (1999) Experiment-modeling comparison in a nonequilibrium supersonic air nozzle flow, Journal of Thermophysics and Heat Tranfer, Vol. 13, No. 1, pp. 68-75. | ||
+ | # P. Domingo, L. Vervisch (1996) Triple flames and partially premixed combustion in autoignition of nonpremixed turbulent mixtures, Proceedings of the Combustion Institute}, pp. 223-240. | ||
+ | # L. Guichard, L. Vervisch, P. Domingo (1995) Two-dimensional weak-shock vortex interaction in a mixing zone, AIAA Journal, Vol 33, No 10, pp. 1797-802. | ||
+ | # P. Domingo, A. Bourdon, P. Vervisch (1995) Study of a low pressure nitrogen plasma jet", Physics of Plasmas, Vol. 2, no 7, pp. 2853-62. | ||
+ | # P. Domingo, D. Vandromme, P. Vervisch (1992) Modeling of an argon plasma in a boundary layer flow, Journal of thermophysics and heat transfer, Vol 6, No 2, pp. 217-23. | ||
+ | |||
+ | == Chapter of Book (peer-reviewed) == | ||
+ | # {{smallcaps| L. Vervisch, P. Domingo, J. Bell.}}, Numerical treatment of turbulent reacting flows (pp: 501-539), Numerical Methods in Turbulence Simulation, R. Moser (Ed), Elsevier, ISBN 978-03-239-1144-3, (2022). | ||
+ | # {{smallcaps| Domingo, P., Nikolaou Z., Seltz, A., Vervisch, L.}}, From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling (pp: 215-232), Data analysis for direct numerical simulation of turbulent combustion, H. Pitsch, A. Attili (Eds), 292 pages, Springer, ISBN 978-3-030-44718-2, (2020). | ||
+ | # {{smallcaps| G. Ribert, P. Domingo, X. Petit, N. Vallée, J.-B. Blaisot}}, Modelling and simulations of high-pressure practical flows (pp: 629-676), ''AIAA Book Series'': High-Pressure Flows for Propulsion Applications (J. Bellan), Print ISBN 978-1-62410-580-7, (2020). | ||
+ | # {{smallcaps| G. Ribert, D. Taieb, X. Petit, G. Lartigue and P. Domingo}}, Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system, ''Eucass Book Series, Adv. Aerospace Sci., Prog. Propul. Phys.'' '''(4)''': 205 - 226 Print ISBN 978-2-7598-0876-2, (2013). | ||
+ | |||
+ | == '''Ph.D. Graduates''' == | ||
+ | |||
+ | - (*) indicates Ph.D. with co-advisor | ||
+ | |||
+ | * Huu-Tri Nguyen*, ”Numerical modeling and simulation of steel gases under flameless combustion", 2022. | ||
+ | * Camille Barnaud*, ”Méthode avancée de prototypage virtuel pour le dimensionnement d’un ensemble lance-tuyère avec prise en compte des transferts thermiques", 2022. | ||
+ | * Andréa Seltz*, ”Application of deep learning to turbulent combustion modeling of real jet fuel for the numerical prediction of particulate emissions", 2020. | ||
+ | * Loïc Ruan*, ”Simulation aux grandes échelles de la combustion dans les scramjets”, 2019. | ||
+ | * Alexandre Bouaniche*,"A hybrid stochastic-sectional method for the simulation of soot particle size distributions", 2019. | ||
+ | * Bastien Duboc*, «Modélisation hybride de la chimie pour la simulation numérique de la combustion», 2017. | ||
+ | * Nicolas Jaouen*, «An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion», 2017. | ||
+ | * Dorian Midou*, «Optimisation d'une lance de charbon pulvérisé», 2017. | ||
+ | * Benjamin Farcy* «Analyse des mécanismes de destruction non catalytique des oxydes d'azote (DENOX) et application aux incinérateurs », 2015. | ||
+ | * Lisa Bouhearouha* «Simulation aux grandes échelles de la combustion supersonique », 2014. | ||
+ | * Xavier Petit* «Analyse de l’interaction cinétique chimique/turbulence dans une flamme cryotechnique LOX/CH4 », 2014. | ||
+ | * Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013. | ||
+ | * Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013. | ||
+ | * Memdouh Belhi « Simulation Numérique de l’Effet de Champ Electrique sur la Stabilité des Flammes de Diffusion », 2012. | ||
+ | * Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011. | ||
+ | * Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011. | ||
+ | * Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010. | ||
+ | * Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010. | ||
+ | * Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi », 2008. | ||
+ | * Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008. | ||
+ | * Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007. | ||
+ | * Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003. | ||
+ | * Tewfik Benazzouz «Modélisation numérique de plasmas en écoulement turbulent, application au cas de l'argon » 1999. | ||
+ | * Alain Leroux « Modélisation d'écoulements supersoniques hors-équilibre chimique et thermique », 1997. | ||
+ | * Anne Bourdon* « Les modélisations physiques d'un écoulement supersonique de plasma d'azote basse pression », 1995. |
Revision as of 16:39, 2 September 2023
Contents
Personal Information
Pascale Domingo
Directrice de recherche CNRS
Office: INSA/Ma.B.R1
email: domingo@coria.fr
Tel: +33 (0)2 32 95 97 93
Lab Address
CORIA
Avenue de l'Université - BP 12
76801 Saint Etienne du Rouvray
Tel: +33 (0)2 32 95 97 93
Fax: +33 (0)2 32 95 97 82
Research Activities
- Numerical Modelling of turbulent reactive flows
Teaching Activities
- Direct and Large Eddy Simulation - INSA de Rouen (15 h)
- Modélisation de la turbulence - Master EFE, Université de Rouen (10 h)
Background
- 1991: PhD University of Rouen
- 1992: Post-Doc, Stanford Aeronautics and Astronautics department
Reviewing activities
- Combustion and Flame, Journal of Fluid Mechanics, Physics of Fluids, Combustion Theory and Modeling, Flow Turbulence and Combustion,
AIAA Journal , Fuel, Combustion Science and Technology
Publications
https://orcid.org/0000-0001-5658-0604
- H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2023) A self-consistent extension of flamelet theory for partially premixed combustion, Combust. Flame. 255: 112911.
- Z. Nikolaou, L. Vervisch, P. Domingo (2023) An optimisation framework for the development of explicit discrete forward and inverse filters, Comput. Fluids. 255: 105840.
- H.-T. Nguyen, C. Barnaud, P. Domingo, P.-D. Nguyen, L. Vervisch (2023) Large-Eddy Simulation of flameless combustion with neural-network driven chemistry, Application Energy Combust. Sci. 14:100126.
- P. Domingo, L. Vervisch (2023) Recent developments in DNS of Turbulent Combustion, Proc. Combust. Inst. (39,4): 2055–2076.
- B. Franzelli, L. Tardelli, M. Stöhr, K.P. Geigle, P Domingo (2023) Assessment of LES of intermittent soot production in an aero-engine model combustor using high-speed measurements, Proc. Combust. Ins.(39,4): 4821-4829.
- E. Yhuel, G. Ribert, P. Domingo (2023) Numerical simulation of laminar premixed hydrogen-air flame/shock interaction in semi-closed channel, Proc. Combust. Inst. (39,3): 3021 - 3029.
- L. Vervisch, G. Lodato, P. Domingo (2023) High-order polynomial approximations for solving non-inertial particle size density in flames, Proc. Combust. Inst. 39: 5385–5393.
- Z. Nikolaou, L. Vervisch, P. Domingo (2022) Criteria to switch from tabulation to neural networks in computational combustion, Combust. Flame 246: 112425.
- Y. Huang, C. Jiang, K. Wan, Z. Gao, L. Vervisch, P. Domingo, Y. He, Z. Wang, C. Lee (2022) Prediction of ignition delay times of jet A-1/hydrogen fuel mixture using machine learning, Aerospace Science and Technology. 127: 107675.
- M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf (2022) A conservative Euler-Lagrange decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, J. Comput. Phys. 464: 111216.
- P. Domingo, L. Vervisch (2022) Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes, Combust. Flame. 239: 111706.
- H.-T. Nguyen, P. Domingo, L. Vervisch, P.-D. Nguyen (2021) Machine learning for integrating combustion chemistry in numerical simulations, Energy & AI 5:100082.
- K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side- wall effects, Proc. Combust. Inst, 38(2): 2825–2833.
- A. Seltz, P. Domingo, L. Vervisch (2021) Solving the population balance equation for non-inertial particles dynamics using PDF and neural networks: Application to a sooting flame, Phys. Fluids. 33, 013311.
- J. Ruan, G. Ribert, P. Domingo (2021) Stabilization and extinction mechanisms of flames in cavity flameholder scramjets Combust. Theory Model. (25,2): 193 - 207. DOI: 10.1080/13647830.2020.1845806 link.
- J. Ruan, L. Bouheraoua, P. Domingo, G. Ribert (2021) Simulation of a Scramjet Combustor: A Priori Study of Thermochemistry Tabulation Techniques Flow, Turbulence and Combustion (106): 1241 - 1276. DOI: 10.1007/s10494-020-00184-4
- K. Wan, L. Vervisch, Z. Gao, P. Domingo, C. Jiang, Z. Wang, J. Xia, Y. Liu, K. Cen (2020) Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion, Applications in Energy and Combustion Science.1-4: 100009.
- K. Wan, L. Vervisch, C. Jianga, P. Domingo, Z. Gao, J. Xia, Z. Wang (2020) Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms, Energy 211: 118565.
- K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combust. Flame 220: 119-129.
- K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. Barlow, C. Hasse (2020) Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements, Combust. Flame 219: 268-274.
- A. Scholtissek, S. Popp, S. Hartl, H. Olguin, P. Domingo, L. Vervisch, C. Hasse (2020) Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates, Combust. Flame 218: 205-217.
- A. Bouaniche, J. Yon, P. Domingo and L. Vervisch (2020) Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach, Flow Turbulence and Combust. 104:753-775.
- L. J. Ruan, P. Domingo, G. Ribert (2020) Analysis of combustion modes in a cavity based scramjet. Combust. Flame.215: 228-251. link
- A. Bouaniche, L. Vervisch, P. Domingo (2019) A hybrid stochastic/fixed-sectional method for solving the population balance equation, Chem. Eng. Sci. 209: 115198.
- A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou (2019) Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks, Combust. Flame. 210: 71-82. https://www.sciencedirect.com/science/article/pii/S0010218019303773?via%3Dihub
- A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame. 207: 342-355.
- K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion, Fuel Processing Technology. 193:19-30.
- A. Bouaniche, N. Jaouen, P. Domingo, L. Vervisch (2019) Vitiated high Karlovitz n-decane/air turbulent flames: Scaling laws and micro-mixing modeling analysis, Flow Turbulence and Combust., [1]
- K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on sodium emissions in pulverized- coal flames, Fuel. 250: 315-326.
- B. Duboc, G. Ribert, P. Domingo (2019) Hybrid transported-tabulated chemistry for partially premixed combustion, Computers Fluids (179): 206 - 227.
- DOI: 10.1016/j.compfluid.2018.10.019 link
- A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst. DOI: 10.1016/j.proci.2018.06.168
- K. Wan, L. Vervisch, J. Xia, P. Domingo, Z. Wang, Y. Liu, K. Cen (2019) Alkali metal emissions in early stage of a pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation, Proc. Combust. Inst. DOI: 10.1016/j.proci.2018.06.119.
- G. Ribert, P. Domingo, L. Vervisch (2019) Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames, Proc. Combust. Inst. (37,2)': 2345 - 2351.
- DOI: 10.1016/j.proci.2018.07.054 link.
- B. Duboc, G. Ribert, P. Domingo (2019) Evaluation of chemistry models on methane/air edge flame simulation, Proc. Combust. Inst. (37,2): 1691 - 1698.
- DOI: 10.1016/j.proci.2018.05.053 link.
- C. Locci, L. Vervisch, B. Farcy, P. Domingo, N. Perret (2018) Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling, Flow Turbulence and Combust., 100(2): 301-340.
- B. Duboc, G. Ribert, P. Domingo (2018) Description of kerosene / air combustion with hybrid transported-tabulated chemistry, Fuel (233): 146 - 158. DOI: 10.1016/j.fuel.2018.06.014 link
- F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, 180:321-339.
- F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame, 180:340-350.
- N. Jaouen, L. Vervisch, P. Domingo (2017) Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36(3): 3321-3330.
- P. Domingo, L. Vervisch (2017) DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177: 109-122.
- L. Bouheraoua, P. Domingo, G. Ribert (2017) Large Eddy Simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base, Combust. Flame, (179): 199 - 218. link
- G. Ribert, X. Petit, P. Domingo (2017) High-pressure methane-oxygen flames. Analysis of sub-grid scale contributions in filtered equations of state, J. Supercritical Fluids, (121): 78 - 88. link
- N. Jaouen, L. Vervisch, P. Domingo, G. Ribert (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem, Combust. Flame, (175): 60 - 79. link
- B. Farcy, L. Vervisch, P. Domingo, N. Perret (2016) Reduced-order modeling for the control of selective non-catalytic reduction (SNCR) of nitrogen monoxide, AIChE Journal, 62(3): 928-938..
- L. Cifuentes, C. Dopazo, J. Martin, C. Jimenez, P. Domingo, L. Vervisch (2016) Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame, Flow Turbulence and Combust., 96(2): 535-546.
- B. Farcy, L. Vervisch, P. Domingo (2016) Large Eddy Simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units, Chemical Engineering Science, 139:285-303.
- A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni, L.-E. Eriksson (2016) Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine, Combust. Sci. Tech. 188(1): 21-39.
- G. Lodier, P. Domingo, L. Vervisch (2015) Quantification of the pre-ignition front propagation in DNS of rapidly compressed mixture, Flow. Turbulence and Combustion, 94(1): 219-235.
- L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2015) Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame, Proc. Combust. Inst., 35(2): 1295-1303.
- P. Domingo, L. Vervisch (2015) Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering, Proc. Combust. Inst., 35(2): 1349-1357.
- X. Petit, G. Ribert, P. Domingo (2015) Framework for real-gas compressible reacting flows with tabulated thermochemistry, J. Supercritical Fluids (101).
- B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret, (2014) Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel, 118: 291-299,
- S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame, 161(7): 1756-1774.
- S. Nambully, P. Domingo, V. Moureau, L. Vervisch A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame, 161(7): 1775-1791.
- G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200. DOI 10.1007/s10494-013-9520-6.
- M. Belhi, P. Domingo, P. Vervisch (2013) Modeling of the Effect of DC and AC Electric Fields on the Stability of a Lifted Diffusion Methane/Air Flame, Combustion Theory and Modelling, 17(4), pp. 749-787(39)http://dx.doi.org/10.1080/13647830.2013.802415
- X. Petit, G. Ribert, P. Domingo, G. Lartigue (2013) Large-eddy simulation of supercritical fluid injection, J. Supercritical Fluids (84): 61 - 73. doi:10.1016/j.supflu.2013.09.011 link.
- C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68 [2]
- C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932. [3]
- G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11), pp. 3358-3371. [4]
- N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation, Combust. Flame 159(1), pp. 336-352.2012 [5]
- G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds, Combust. Flame 158(10): 2009-2016. [6]
- V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling, Combust. Flame 158(7): 1340-1357 [7]
- V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2/3): 141-148.
- K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss, Combust. Theory and Modelling 14(4): 541-570.
- M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of an electric field on flame stability , Combustion and Flame, 157(12): 2286-2297
- D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion, Exp. in Fluids 49:267-278.
- L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion, Combust. Flame 157(4): 778-789.
- V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.
- P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61.
- G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.
- G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.
- D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088.
- J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266.
- G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.
- P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.
- P. Domingo, L. Vervisch (2007) DNS of partially premixed flame propagating in a turbulent rotating flow, Proceedings of the Combustion Institute, Vol. 31, pp 1657-1664.
- L. Vervisch, P. Domingo (2006) Two recent developments in numerical simulation of premixed and partially premixed turbulent flame, C. R. Mecanique, 334 (8/9), pp. 523-530.
- C. Péra, J. Réveillon, L. Vervisch, P. Domingo (2006) Modeling subgrid scale mixture fraction variance in LES of evaporating spray, Combustion and Flame, Vol.146(4).
- P. Domingo, L. Vervisch, S. Payet and R. Hauguel, (2005) DNS of a Premixed Turbulent V-Flame and LES of a Ducted-Flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry, Combustion and Flame}, 143(4), pp. 566-586.
- K.N.C. Bray, P. Domingo, L. Vervisch, (2005) The role of progress variable in models for partially premixed turbulent combustion, Combustion and Flame, 141(4), pp. 431-437.
- P. Domingo, L. Vervisch, J. Réveillon, (2005) DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air, Combustion and Flame, 140(3), pp. 172-195.
- R. Hauguel, L. Vervisch, P. Domingo (2005) DNS of premixed turbulent V-Flame: coupling spectral and finite difference methods, C. R. Mecanique , 333 (1), pp.~95-102.
- L. Vervisch, R. Hauguel, P. Domingo, M. Rullaud (2004) Three facets of turbulent combustion modeling: DNS of premixed V-flame, LES of lifted nonpremixed flames and RANS of jet-flame, Journal of turbulence, 5(4), pp. 1-36.
- P. Domingo, L. Vervisch, K. N. C. Bray (2002) Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, 6(4), pp. 529-551.
- P. Domingo, K. N. C. Bray (2000) Laminar Flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion, Combustion and Flame, Vol 121, pp 555-74.
- P. Domingo, T. Benazzouz (2000) Direct numerical simulation and modeling of a nonequilibrium turbulent plasma, AIAA Journal, Vol. 38, No. 1, pp. 73-78.
- A. Bourdon, A. Leroux, P. Domingo, P. Vervisch (1999) Experiment-modeling comparison in a nonequilibrium supersonic air nozzle flow, Journal of Thermophysics and Heat Tranfer, Vol. 13, No. 1, pp. 68-75.
- P. Domingo, L. Vervisch (1996) Triple flames and partially premixed combustion in autoignition of nonpremixed turbulent mixtures, Proceedings of the Combustion Institute}, pp. 223-240.
- L. Guichard, L. Vervisch, P. Domingo (1995) Two-dimensional weak-shock vortex interaction in a mixing zone, AIAA Journal, Vol 33, No 10, pp. 1797-802.
- P. Domingo, A. Bourdon, P. Vervisch (1995) Study of a low pressure nitrogen plasma jet", Physics of Plasmas, Vol. 2, no 7, pp. 2853-62.
- P. Domingo, D. Vandromme, P. Vervisch (1992) Modeling of an argon plasma in a boundary layer flow, Journal of thermophysics and heat transfer, Vol 6, No 2, pp. 217-23.
Chapter of Book (peer-reviewed)
- L. Vervisch, P. Domingo, J. Bell., Numerical treatment of turbulent reacting flows (pp: 501-539), Numerical Methods in Turbulence Simulation, R. Moser (Ed), Elsevier, ISBN 978-03-239-1144-3, (2022).
- Domingo, P., Nikolaou Z., Seltz, A., Vervisch, L., From discrete and iterative deconvolution operators to machine learning for premixed turbulent combustion modeling (pp: 215-232), Data analysis for direct numerical simulation of turbulent combustion, H. Pitsch, A. Attili (Eds), 292 pages, Springer, ISBN 978-3-030-44718-2, (2020).
- G. Ribert, P. Domingo, X. Petit, N. Vallée, J.-B. Blaisot, Modelling and simulations of high-pressure practical flows (pp: 629-676), AIAA Book Series: High-Pressure Flows for Propulsion Applications (J. Bellan), Print ISBN 978-1-62410-580-7, (2020).
- G. Ribert, D. Taieb, X. Petit, G. Lartigue and P. Domingo, Simulation of supercritical flows in rocket-motor engines: application to cooling channel and injection system, Eucass Book Series, Adv. Aerospace Sci., Prog. Propul. Phys. (4): 205 - 226 Print ISBN 978-2-7598-0876-2, (2013).
Ph.D. Graduates
- (*) indicates Ph.D. with co-advisor
- Huu-Tri Nguyen*, ”Numerical modeling and simulation of steel gases under flameless combustion", 2022.
- Camille Barnaud*, ”Méthode avancée de prototypage virtuel pour le dimensionnement d’un ensemble lance-tuyère avec prise en compte des transferts thermiques", 2022.
- Andréa Seltz*, ”Application of deep learning to turbulent combustion modeling of real jet fuel for the numerical prediction of particulate emissions", 2020.
- Loïc Ruan*, ”Simulation aux grandes échelles de la combustion dans les scramjets”, 2019.
- Alexandre Bouaniche*,"A hybrid stochastic-sectional method for the simulation of soot particle size distributions", 2019.
- Bastien Duboc*, «Modélisation hybride de la chimie pour la simulation numérique de la combustion», 2017.
- Nicolas Jaouen*, «An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion», 2017.
- Dorian Midou*, «Optimisation d'une lance de charbon pulvérisé», 2017.
- Benjamin Farcy* «Analyse des mécanismes de destruction non catalytique des oxydes d'azote (DENOX) et application aux incinérateurs », 2015.
- Lisa Bouhearouha* «Simulation aux grandes échelles de la combustion supersonique », 2014.
- Xavier Petit* «Analyse de l’interaction cinétique chimique/turbulence dans une flamme cryotechnique LOX/CH4 », 2014.
- Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013.
- Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013.
- Memdouh Belhi « Simulation Numérique de l’Effet de Champ Electrique sur la Stabilité des Flammes de Diffusion », 2012.
- Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011.
- Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011.
- Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010.
- Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010.
- Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi », 2008.
- Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008.
- Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007.
- Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003.
- Tewfik Benazzouz «Modélisation numérique de plasmas en écoulement turbulent, application au cas de l'argon » 1999.
- Alain Leroux « Modélisation d'écoulements supersoniques hors-équilibre chimique et thermique », 1997.
- Anne Bourdon* « Les modélisations physiques d'un écoulement supersonique de plasma d'azote basse pression », 1995.