Difference between revisions of "SiTCom-B Gallery"

From www.coria-cfd.fr
Jump to: navigation, search
(HIT of a non-reacting flow)
(HIT of a non-reacting flow)
Line 1: Line 1:
 
== HIT of a non-reacting flow ==
 
== HIT of a non-reacting flow ==
  
This is a very simple DNS computation of a HIT with a constant-properties gas.
+
This is a very simple DNS computation of a HIT with a constant-properties gas.<br/>
Numerical scheme is RK3, 4th order skew symmetric with no AV.
+
The main parameters of the simulation are:
 +
* temporal integration: RK3,
 +
* spatial scheme: 4th order skew symmetric
 +
* no AV.
  
 
In this series of computations, the number of cell is increased from 64^3 to 256^3.
 
In this series of computations, the number of cell is increased from 64^3 to 256^3.
  
 
{| class="wikitable"
 
{| class="wikitable"
|+ HIT on increasing number of cells
+
|+ HIT on increasing number of cells. The displayed field is <math>\nabla \wedge U</math>
 
|-
 
|-
| [[File:HIT_0064cube.png|center|250px]]
+
| [[File:HIT_0064cube.png|center|400px]]
| [[File:HIT_0128cube.png|center|250px]]
+
| [[File:HIT_0128cube.png|center|400px]]
| [[File:HIT_0256cube.png|center|250px]]
+
| [[File:HIT_0256cube.png|center|400px]]
 
|-
 
|-
 
|<math>N_c=64^3 \quad Re_{\lambda} = 24.6</math>
 
|<math>N_c=64^3 \quad Re_{\lambda} = 24.6</math>

Revision as of 11:35, 9 February 2011

HIT of a non-reacting flow

This is a very simple DNS computation of a HIT with a constant-properties gas.
The main parameters of the simulation are:

  • temporal integration: RK3,
  • spatial scheme: 4th order skew symmetric
  • no AV.

In this series of computations, the number of cell is increased from 64^3 to 256^3.

HIT on increasing number of cells. The displayed field is
HIT 0064cube.png
HIT 0128cube.png
HIT 0256cube.png

Flame base stabilization in vitiated partially-premixed mixture

Nice QW.png

  • P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.

Electric field and edge-flame

Electric edges 1.png

  • M. Belhi, P. Domingo, P. Vervisch (2010) Direct numerical simulation of the effect of an electric field on flame stability Combust. Flame 157 2286–2297.

NSCBC vs 3D-NSCBC in jets

Jet NSCBC 1D.png Jet 3DNSCBC bis.png

  • G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.

Impinging round jets

Wall/jet interaction Jet wall 1.png]]

Jet wall 2.png Jet wall 3.png

  • G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.

Ignition of a bluff-body burner

Igni bluff 1.png

  • V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.

Bunsen flame

Bunsen.png

  • G. Lodato, P. Domingo, L. Vervisch, D. Veynante (2009) Scalar variances: LES against measurements and mesh optimization criterion; scalar gradient: a three-dimensional estimation from planar measurements using DNS In Studying turbulence by using numerical simulation databases XII, (Eds Center for Turbulence Research) Stanford, pp. 387-398

Jet flame-surface

Jet flame DNS.png

  • L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion Combust. Flame 157(4): 778-789.
  • D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion Exp. in Fluids 49:267-278.

Nonpremixed jet flame

Sandia flame.png

  • G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.