Jump to: navigation, search

Personal Information

Luc Vervisch
Professor at INSA de Rouen Normandie
Normandie Université
Senior member of "Institut Universitaire de France" (IUF)

Postal address:
INSA de Rouen Normandie
Avenue de l'Université
Campus du Madrillet
76800 Saint-Etienne-du-Rouvray

GPS: N49.385869, E1.068307

Office: INSA/Ma.B.R1.13
Tel: +33 (0)2 32 95 97 85

ORCID Scopus Google scholar WoS

Research Activities

Luc research uses numerical simulations and data driven approaches to address reacting flows physics. The first and foremost studied problems relate to combustion and flames. Understanding the very details of the physics to answer scientific questions with computer simulation are the main objectives. Luc has developed physical modelling (set of equations) used in software specialized in virtual prototyping of environmentally friendly systems for energy production, transportation and transformation industries.

Current projects include gas purification and fluid-mechanics in line with the next generation of carbon-neutral fuels.

Teaching Activities



  • Gas dynamics
  • Airfoil solutions
  • Two-phase flows
  • Turbulence modeling


  • Turbulent combustion modeling
  • Direct and Large Eddy Simulation
  • Lattice Boltzmann method
  • Machine learning for flow simulation

Educational Background

1989 M.Sc. Aerothermochemistry University of Rouen Normandie
1989 Gold-Medal Music Conservatory of Haute-Normandie (Class: Prof. L. Thiry)
1991 PhD Mechanical Engineering National Hydraulic Laboratory Chatou & University of Rouen Normandy (Advisors: Prof. R. Borghi & Prof. D. Vandromme)
1992 Post-Doc Mechanical Engineering Center for Turbulence Research, Stanford University, California
1996 Habilitation Mechanical Engineering University of Rouen Normandie

Awards and fellowships

Editorial activities

  • 2003 – 2008: Editorial board of “Combustion and Flame”, Elsevier.
  • 2003 – 2015: Co-editor of “Flow Turbulence and Combustion”, Springer.
  • 2003 – 2013: Associate Editors board of “Journal of Turbulence”, Taylor & Francis.
  • 2010 - present: Co-editor of "Comptes-Rendus Mecanique", Elsevier.
  • 2016 - present: Editorial Advisory board of “Flow Turbulence and Combustion”, Springer.
  • 2016: Co-editor of the ERCOFTAC Best Practice Guidelines "Computational Fluid Dynamics of Turbulent Combustion".

Recent academic duties

  • 2001-present: Expert for research funding agencies (ANR France; DEISA-DECI, PRACE, ERC CEE; NSF, DOE, ACS-PRF USA; FOM Belgium, NWO, STW Netherlands, Swedish Research Council, GACR Czech; SNSF Swiss; ANVUR Italy; NSC Poland, EPSRC UK).
  • 05/2012-09/2014: Director of the INSA office for research.
  • 2008-2016: President of GENCI supercomputing reactive and multi-phase flow technical committee (CT2B).
  • 2016-2020/2020-2022: Member of the Scientific Council of IFP Energies Nouvelles.
  • 2022-present: President of the Scientific Council of IFP Energies Nouvelles.


Scopus ORCID Google scholar WoS

  • H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2024) On the closure of curvature in 2D flamelet theory, Combust. Flame: 267, 113599.
  • N. Jaouen, H.-T. Nguyen, P. Domingo, L. Vervisch (2024) ORCh: A package to reduce and optimize chemical kinetics. Application to tetrafluoromethane oxidation, SoftwareX: 27, 101819.
  • Z. Nikolaou, P. Domingo, L. Vervisch (2024) Revisiting the modelling framework for the unresolved scalar variance, J. Fluid Mech. 983: A47.
  • H. Olguin, P. Domingo, L. Vervisch, C. Hasse, A. Scholtissek (2023) A self-consistent extension of flamelet theory for partially premixed combustion, Combust. Flame. 255: 112911.
  • Z. Nikolaou, L. Vervisch, P. Domingo (2023) An optimisation framework for the development of explicit discrete forward and inverse filters, Comput. Fluids. 255: 105840.
  • H.-T. Nguyen, C. Barnaud, P. Domingo, P.-D. Nguyen, L. Vervisch (2023) Large-Eddy Simulation of flameless combustion with neural-network driven chemistry, Application Energy Combust. Sci. 14:100126.
  • P. Domingo, L. Vervisch (2023) Recent developments in DNS of Turbulent Combustion, Proc. Combust. Inst. 39: 2055–2076.
  • L. Vervisch, G. Lodato, P. Domingo (2023) High-order polynomial approximations for solving non-inertial particle size density in flames, Proc. Combust. Inst. 39: 5385–5393.
  • J. Bissantz, J. Karpowski, M. Steinhausen, Y. Luo, F. Ferraro, A. Scholtissek, C. Hasse, L. Vervisch (2023) Application of dense neural networks for manifold-based modeling of flame-wall interactions, Application Energy Combust. Sci. 13: 100113.
  • Z. Nikolaou, L. Vervisch, P. Domingo (2022) Criteria to switch from tabulation to neural networks in computational combustion, Combust. Flame 246: 112425.
  • Y. Huang, C. Jiang, K. Wan, Z. Gao, L. Vervisch, P. Domingo, Y. He, Z. Wang, C. Lee (2022) Prediction of ignition delay times of jet A-1/hydrogen fuel mixture using machine learning, Aerospace Science and Technology. 127: 107675.
  • M. Leer, M. W. A. Pettit, J. T. Lipkowicz, P. Domingo, L. Vervisch, A. M. Kempf (2022) A conservative Euler-Lagrange decomposition principle for the solution of multi-scale flow problems at high Schmidt or Prandtl numbers, J. Comput. Phys. 464: 111216.
  • G. Lodato, L. Vervisch, J.-B. Chapelier (2022) Mitigation of post-shock oscillations induced by artificial viscosity in discontinuous finite element methods, Comput. Fluids 241: 105491.
  • P. Domingo, L. Vervisch (2022) Revisiting the relation between premixed flame brush thickness and turbulent burning velocities from Ken Bray's notes, Combust. Flame. 239: 111706.
  • P.-D. Nguyen, H.-T. Nguyen, P. Domingo, L. Vervisch, G. Mosca, M. Gazdallah, P. Lybaert V. Feldheim (2022) Flameless combustion of low calorific value gases, experiments and simulations with advanced radiative heat transfer modeling, Phys. Fluids. 34:045123.
  • N. Tonicello, G. Lodato, L. Vervisch (2022) Turbulence kinetic energy transfers in DNS of shock wave-turbulence interaction in a compression/expansion-ramp, J. Fluid Mech. 935:A31-1-43.
  • N. Tonicello, G. Lodato, L. Vervisch (2022) Analysis of high-order explicit LES dynamic modeling applied to airfoil flows, Flow Turbulence Combust. 108(1): 77-104.
  • E. V. Palkin, M. Y. Hrebtov, D. A. Slastnaya, R. I. Mullyadzhanov, L. Vervisch, D. K. Sharaborin, A. S. Lobasov, V. M. Dulin (2022) Influence of a Central Jet on Isothermal and Reacting Swirling Flow in a Model Combustion Chamber. Energies 2022, 15(5), 1615.
  • H. Tofaili, G. Lodato, L. Vervisch, P. Clavin (2021) One-dimensional dynamics of gaseous detonations revisited, Combust. Flame 232: 111535.
  • H.-T. Nguyen, P. Domingo, L. Vervisch, P.-D. Nguyen (2021) Machine learning for integrating combustion chemistry in numerical simulations, Energy & AI 5:100082.
  • N. Tonicello, G. Lodato, L. Vervisch (2021) A comparative study from spectral analyses of high-order methods with non-constant advection velocities, Journal of Scientific Computing 87:65 1-38.
  • S. Popp, S. Hart, D. Butz, D. Geyer, A. Dreizler, L. Vervisch, C. Hasse (2021) Assessing multi-regime combustion in a novel burner configuration with large eddy simulations using tabulated chemistry, Proc. Combust. Inst. 38(2): 2551-2558.
  • K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side- wall effects, Proc. Combust. Inst. 38(2): 2825–2833.
  • Z. M. Nikolaou, C. Chrysostomou, Y. Minamoto, L. Vervisch (2021) Evaluation of a neural network-based closure for the unresolved stresses in turbulent premixed V-flames, Flow Turbulence and Combust. 106(2):331–356.
  • A. Seltz, P. Domingo, L. Vervisch (2021) Solving the population balance equation for non-inertial particles dynamics using PDF and neural networks: Application to a sooting flame, Phys. Fluids. 33, 013311.
  • K. Wan, L. Vervisch, Z. Gao, P. Domingo, C. Jiang, Z. Wang, J. Xia, Y. Liu, K. Cen (2020) Reduced chemical reaction mechanisms for simulating sodium emissions by solid-fuel combustion, Applications in Energy and Combustion Science. 1-4: 100009.
  • K. Wan, L. Vervisch, C. Jianga, P. Domingo, Z. Gao, J. Xia, Z. Wang (2020) Development of reduced and optimized reaction mechanism for potassium emissions during biomass combustion based on genetic algorithms, Energy 211: 118565.
  • K. Wan, C. Barnaud, L. Vervisch, P. Domingo (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects, Combust. Flame 220: 119-129.
  • K. Wan, S. Hartl, L. Vervisch, P. Domingo, R. Barlow, C. Hasse (2020) Combustion regime identification from machine learning trained by Raman/Rayleigh line measurements, Combust. Flame 219: 268-274.
  • A. Scholtissek, S. Popp, S. Hartl, H. Olguin, P. Domingo, L. Vervisch, C. Hasse (2020) Derivation and analysis of two-dimensional composition space equations for multi-regime combustion using orthogonal coordinates, Combust. Flame 218: 205-217.
  • A. Bouaniche, J. Yon, P. Domingo and L. Vervisch (2020) Analysis of the soot particle size distribution in a laminar premixed flame: A hybrid stochastic/fixed-sectional approach, Flow Turbulence and Combust. 104:753-775.
  • N. Tonicello, G. Lodato, L. Vervisch (2020) Entropy preserving low dissipative shock capturing with wave-characteristic based sensor for high-order methods, Comput. Fluids. 197:104357
  • Y. Liu, J. Xia, K. Wan, L. Vervisch, Z. Wang, H. Zhao, K. Cen (2020) Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method, Combust. Flame 21:325-336.
  • A. Bouaniche, L. Vervisch, P. Domingo (2019) A hybrid stochastic/fixed-sectional method for solving the population balance equation, Chem. Eng. Sci. 209: 115198.
  • A. Seltz, P. Domingo, L. Vervisch, Z. M. Nikolaou (2019) Direct mapping from LES resolved scales to filtered-flame generated manifolds using convolutional neural networks, Combust. Flame. 210: 71-82.
  • Z. M. Nikolaou, C. Chrysostomou, L. Vervisch, S. Cant (2019) Progress variable variance and filtered rate modelling using convolutional neural networks and flamelet methods, Flow Turbulence and Combust. 103(2): 485-501.
  • A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained composition space solution method for strained and curved premixed flamelets. Combust. Flame. 207: 342-355.
  • Z. M. Nikolaou, Y. Minamoto, L. Vervisch (2019) Unresolved stress tensor modelling in turbulent premixed V-flames using iterative deconvolution: An a priori assessment. Phys. Rev. Fluids. 4(6): 063202.
  • K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on potassium emissions in pulverized-biomass combustion, Fuel Processing Technology. 193:19-30.
  • A. Bouaniche, N. Jaouen, P. Domingo, L. Vervisch (2019) Vitiated high Karlovitz n-decane/air turbulent flames: Scaling laws and micro-mixing modeling analysis, Flow Turbulence and Combust. 102(1): 235–252.
  • K. Wan, Z. Wang, J. Xia, L. Vervisch, P. Domingo, Y. Lv, Y. Liu, Y. He, K. Cen (2019) Numerical study of HCl and SO2 impact on sodium emissions in pulverized-coal flames, Fuel. 250: 315-326.
  • K. Bioche, A. Pieyre, G. Ribert, F. Richecoeur, L. Vervisch (2019) The role of gravity in the asymmetry of flames in narrow combustion chambers, Combust. Flame. 203: 238-246.
  • A. Scholtissek, P. Domingo, L. Vervisch, C. Hasse (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets, Proc. Combust. Inst. 37(2): 1529-1536.
  • G. Ribert, P. Domingo, L. Vervisch (2019) Analysis of sub-grid scale modeling of the ideal-gas equation of state in hydrogen-oxygen premixed flames, Proc. Combust. Inst. 37(3): 3255-3262.
  • K. Wan, L. Vervisch, J. Xia, P. Domingo, Z. Wang, Y. Liu, K. Cen (2019) Alkali metal emissions in early stage of a pulverized-coal flame: DNS analysis of reacting layers and chemistry tabulation, Proc. Combust. Inst. 37(3): 2791-2799.
  • Y. Liu, Z. Wang, J. Xia, L. Vervisch, K. Wan, Y. He, R. Whiddon, H. Bahai, K. Cen (2019) Measurement and kinetics of elemental and atomic potassium release from a burning biomass pellet, Proc. Combust. Inst. 37(3): 2681-2688.
  • K. Bioche, G. Ribert, L. Vervisch (2019) Simulating upstream flame propagation in a narrow channel after wall preheating: Flame analysis and chemistry reduction strategy, Combust. Flame. 200: 219-231.
  • K. Bioche, L. Vervisch, G. Ribert (2018) Premixed flame-wall interaction in a narrow channel: Impact of wall thermal conductivity and heat losses, J. Fluid Mech. 856: 5-35.
  • Z. Nikolaou, L. Vervisch (2018) A priori assessment of an iterative deconvolution method for LES sub-grid scale variance modelling, Flow Turbulence and Combust. 101(1): 33-53.
  • Z. Nikolaou, R. S. Cant, L. Vervisch (2018) Scalar flux modelling in turbulent flames using iterative deconvolution, Phys. Rev. Fluids. 3(4): 043201.
  • K. Wan, J. Xia, L. Vervisch, Y. Liu, Z. Wang, K. Cen (2018) Modeling alkali metal emissions in large-eddy simulation of a preheated pulverized-coal turbulent jet flame using tabulated chemistry, Combust. Theory and Modeling, 22(2):203-236.
  • C. Locci, L. Vervisch, B. Farcy, P. Domingo, N. Perret (2018) Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling, Flow Turbulence and Combust. 100(2): 301-340.
  • G. Lodato, L. Vervisch, P. Clavin (2017) Numerical study of smoothly perturbed shocks in the Newtonian limit, Flow Turbulence and Combust. 99(3-4): 887-908.
  • F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: Analysis of the reaction zone dynamics with tabulated chemistry, Combust. Flame, 180:321-339.
  • F. Proch, P. Domingo, L. Vervisch, A. Kempf (2017) Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part II: A-priori and a-posteriori investigation of sub-grid scale wrinkling closures in the context of artificially thickened flame modeling, Combust. Flame, 180:340-350.
  • N. Jaouen, L. Vervisch, P. Domingo (2017) Auto-thermal reforming (ATR) of natural gas: An automated derivation of optimised reduced chemical schemes, Proc. Combust. Inst., 36(3): 3321-3330.
  • P. Domingo, L. Vervisch (2017) DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modeling, Combust. Flame, 177: 109-122.
  • N. Jaouen, L. Vervisch, P. Domingo, G. Ribert (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem, Combust. Flame, 175: 60-79.
  • Z. Pouransari, L. Vervisch, L. Fuchs, A. Johansson (2016) DNS analysis of wall heat transfer and combustion regimes in a turbulent non-premixed wall-jet flame, Flow Turbulence and Combust., 97(3): 951-969.
  • C. Locci, L. Vervisch (2016) Eulerian scalar projection in Lagrangian point source context: An approximate inverse filtering approach, Flow Turbulence and Combust., 97(1):363-368.
  • A. Rasam, Z. Pouransari, L. Vervisch, A. Johansson (2016) Assessment of subgrid-scale stress statistics in non-premixed turbulent wall-jet flames, J. of Turbulence, 17(5): 471-490.
  • L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2016) Effects of the local flow topologies upon the structure of a premixed methane-air turbulent jet flame, Flow Turbulence and Combust, 96(2): 535-546.
  • G. Lodato, L. Vervisch, P. Clavin (2016) Direct numerical simulation of shock wavy-wall interaction: Analysis of cellular shock structures and flow patterns, J. Fluid Mech, 789: 221-258.
  • B. Farcy, L. Vervisch, P. Domingo, N. Perret (2016) Reduced-order modeling for the control of selective non-catalytic reduction (SNCR), AIChE Journal, 62(3): 928-938.
  • B. Farcy, L. Vervisch, P. Domingo (2016) Large Eddy Simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units, Chem. Eng. Sci., 139:285-303.
  • A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni, L.-E. Eriksson (2016) Optimized reduced chemistry and molecular transport for Large Eddy Simulation of partially premixed combustion in a gas turbine. Combust. Sci. Tech. 188(1): 21-39.
  • G. Lodier, P. Domingo, L. Vervisch (2015) Quantification of the pre-ignition front propagation in DNS of rapidly compressed mixture, Flow. Turbulence and Combustion, 94(1): 219-235.
  • B. Denet, L. Biamino, G. Lodato, L. Vervisch, P. Clavin (2015) Model equation for the dynamics of wrinkled shock waves. Comparison with DNS and experiments. Combust. Sci. Tech., 187(1-2): 296-323.
  • L. Cifuentes, C. Dopazo, J. Martin, P. Domingo, L. Vervisch (2015) Local volumetric dilatation rate and scalar geometries in a premixed methane-air turbulent jet flame. Proc. Combust. Inst., 35(2): 1295-1303.
  • P. Domingo, L. Vervisch (2015) Large Eddy Simulation of premixed turbulent combustion using approximate deconvolution and explicit flame filtering. Proc. Combust. Inst., 35(2): 1349-1357.
  • Z. Pouransari, L. Vervisch, A. V. Johansson (2014) Reynolds number effects on statistics and structure of an isothermal reacting turbulent wall-jet. Flow Turbulence Combust. 92(4): 931-945.
  • S. Nambully, P. Domingo, V. Moureau, L. Vervisch (2014) A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames. Part I: Formalism and application to a bluff-body burner with differential diffusion. Combust. Flame, 161(7): 1756-1774.
  • S. Nambully, P. Domingo, V. Moureau, L. Vervisch (2014) A Filtered-Laminar-Flame PDF sub-grid scale closure for LES of premixed turbulent flames: Part II: Application to a stratified bluff-body burner, Combust. Flame, 161(7): 1775-1791.
  • B. Farcy, A. Abou-Taouk, L. Vervisch, P. Domingo, N. Perret (2014) Two approaches of chemistry downsizing for simulating Selective Non Catalytic Reduction DeNOx Process, Fuel, 118: 291-299.
  • G. Ribert, L. Vervisch, P. Domingo, Y.-S. Niu (2014) Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames, FLow Turbulence and Combustion, 92(1/2): 175-200.
  • F. Pecquery, V. Moureau, G. Lartigue, L. Vervisch, A. Roux (2014) Modelling nitrogen oxide emissions in turbulent flames with air dilution: Application to LES of a non-premixed jet-flame, Combust. Flame, 161(2): 496-509.
  • Z. Pouransari, L. Vervisch, A. Johansson (2013) Heat release effects on mixing scales of non-premixed turbulent wall-jets: A direct numerical simulation study, Int. J. Heat and Fluid Flow, 40(4): 65-80.
  • Y.-S. Niu, L. Vervisch, P.-D. Tao (2013) An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition, Combust. Flame, 160(4): 776-785.
  • C. Merlin, P. Domingo, L. Vervisch (2013) Immersed boundaries in Large Eddy Simulation of compressible flows, FLow Turbulence and Combustion, 90(1): 29-68.
  • C. Merlin, P. Domingo, L. Vervisch (2012) Large Eddy Simulation of turbulent flames in a Trapped Vortex Combustor (TVC) - A flamelet presumed-pdf closure preserving laminar flame speed Comptes Rendus Mécanique, 340 (11/12): 917-932.
  • G. Lodier, C. Merlin, P. Domingo, L. Vervisch, F. Ravet (2012) Self-ignition scenarios after rapid compression of a turbulent mixture weakly-stratified in temperature, Combust. Flame, 159(11): 3358-3371.
  • G. Ribert, K. Wang, L. Vervisch (2012) A multi-zone self-similar chemistry tabulation with application to auto-ignition including cool-flames effects Fuel, 91(1): 87-92.
  • N. Enjalbert, P. Domingo, L. Vervisch (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation Combust. Flame 159(1): 336-352.
  • E. Albin, Y. D'Angelo, L. Vervisch (2012) Using staggered grids with characteristic boundary conditions when solving compressible reactive Navier-Stokes equations Int. J. Numer. Meth. Fl. 68(5): 546-563.
  • G. Lodier, L. Vervisch, V. Moureau, P. Domingo (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds Combust. Flame 158(10): 2009-2016.
  • E. Albin, Y. D'Angelo, L. Vervisch (2011) Flow streamline based Navier-Stokes Characteristic Boundary Conditions: modeling for transverse and corner outflows, Computers and Fluids, 51(1): 115-126.
  • V. Moureau, P. Domingo, L. Vervisch (2011) From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered Laminar Flame-PDF modeling Combust. Flame 158(7): 1340-1357.
  • V. Moureau, P. Domingo, L. Vervisch (2011) Design of a massively parallel CFD code for complex geometries C.R. Mecanique 339(2-3): 141-148.
  • G. Lecocq, S. Richard, J.-B. Michel, L. Vervisch (2011) A new LES model coupling flame surface density and tabulated kinetics approaches to investigate knock and pre-ignition in piston engines Proc. Combust. Inst., 33(2): 3105-3114.
  • G. Lecocq, S. Richard, O. Colin, L. Vervisch (2011) Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion Part 1: Formalism and simulation of a quasi-steady burner Combust. Flame 158(6): 1201-1214.
  • G. Lecocq, S. Richard, O. Colin, L. Vervisch (2011) Hybrid presumed pdf and flame surface density approaches for Large-Eddy Simulation of premixed turbulent combustion Part 2: Early flame development after sparking Combust. Flame 158(6): 1215-1226.
  • K. Wang, G. Ribert, P. Domingo, L. Vervisch (2010) Self-similar behavior and chemistry tabulation of burnt-gases diluted premixed flamelets including heat-loss Combust. Theory and Modelling 14(4): 541-570.
  • G. Lecocq, S. Richard, O. Colin, L. Vervisch (2010) Gradient and counter-gradient modelling in premixed flames: theoretical study and application to the LES of a Lean premixed turbulent swirl-burner Comb. Sci. Tech. 182(4-6): 465-479.
  • D. Veynante, G. Lodato, P. Domingo, L. Vervisch, E. R. Hawkes (2010) Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion Exp. in Fluids 49:267-278.
  • L. Vervisch, P. Domingo, G. Lodato, D. Veynante (2010) Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion Combust. Flame 157(4): 778-789.
  • V. Subramanian, P. Domingo, L. Vervisch (2010) Large-Eddy Simulation of forced ignition of an annular bluff-body burner Combust. Flame 157(3): 579-601.
  • P.-D. Nguyen, L. Vervisch, V. Subramanian, P. Domingo (2010) Multi-dimensional flamelet-generated manifolds for partially premixed combustion Combust. Flame 157(1): 43-61.
  • G. Lodato, L. Vervisch, P. Domingo (2009) A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet Phys. Fluids 21:035102.
  • G. Godel, P. Domingo, L. Vervisch (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames Proc. Combust. Inst. 32: 1555-1551.
  • D. Veynante, B. Fiorina, P. Domingo L. Vervisch, (2008) Using self-similar properties of turbulent premixed flames to downsize chemical tables in high-performance numerical simulations Combust. Theory and Modeling 12(6): 1055-1088.
  • J. Galpin, A. Naudin, L. Vervisch, C. Angelberger, O. Colin, P. Domingo (2008) Large-Eddy Simulation of a fuel lean premixed turbulent swirl burner Combust. Flame 155(1): 247 266.
  • G. Lodato, P. Domingo, L. Vervisch (2008) Three-dimensional boundary conditions for Direct and Large-Eddy Simulation of compressible flows J. of Comp. Phys. 227(10): 5105-5143.
  • J. Galpin, C. Angelberger, A. Naudin, L. Vervisch (2008) Large-Eddy Simulation of H2-air auto-ignition using tabulated detailed chemistry J. of Turbulence 9(13).
  • P. Domingo, L. Vervisch, D. Veynante (2008) Large-Eddy Simulation of a lifted methane jet flame in a vitiated coflow Combust. Flame 152(3): 415-432.
  • G. Subramanian, R. Bounaceur, A. Pirez Da Cruz, L. Vervisch (2007) Chemical impact of CO and H2 addition on the auto-ignition delay of homogeneous n-heptane/air mixtures Comb. Sci. Tech. 179(9): 1937-1962.
  • P. Domingo, L. Vervisch (2007) DNS of partially premixed flame propagating in a turbulent rotating flow Proc. Combust. Inst. 31:1657-1664.
  • X. Paubel, A. Cessou, D. Honoré, L. Vevisch, R. Rsiava (2007) A flame stability diagram for piloted non-premixed oxycombustion of low calorific residual gases Proc. Combust. Inst. 31: 3385-3392.
  • C. Péra, J. Réveillon, L. Vervisch, P. Domingo (2006) Modeling subgrid scale mixture fraction variance in LES of evaporating spray Combust. Flame 146(4): 635-648.
  • L. Vervisch, P. Domingo (2006) Two recent developments in numerical simulation of premixed and partially premixed turbulent flame C. R. Mecanique 334 (8/9): 523-530.
  • P. Domingo, L. Vervisch, S. Payet and R. Hauguel (2005) DNS of a Premixed Turbulent V-Flame and LES of a Ducted-Flame using a FSD-PDF subgrid scale closure with FPI tabulated chemistry Combust. Flame 143(4): 566-586.
  • K.N.C. Bray, P. Domingo, L. Vervisch (2005) The role of progress variable in models for partially premixed turbulent combustion Combust. Flame 141(4): 431-437.
  • J. Réveillon, L. Vervisch (2005) Analysis of weakly turbulent diluted-spray flames and combustion regimes J. Fluid Mech. 537: 317-347.
  • P. Domingo, L. Vervisch, J. Réveillon (2005) DNS analysis of partially premixed combustion in spray and gaseous turbulent-flame bases stabilized in hot air. Combust. Flame 140(3): 172-195.
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, N. Darabiha (2005) Approximating the chemical structure of partially-premixed and diffusion counter-flow flames using FPI flamelet tabulation Combust. Flame 140(3): 147-160.
  • B. Fiorina, O. Gicquel, L. Vervisch, S. Carpentier, N. Darabiha (2005) Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF Proc. Combust. Inst. 30(1): 867-874.
  • R. Hauguel, L. Vervisch, P. Domingo (2005) DNS of premixed turbulent V-Flame: coupling spectral and finite difference methods C. R. Mecanique 333 (1): 95-102.
  • L. Vervisch, P. Domingo, M. Rullaud, R. Hauguel (2004) Three facets of turbulent combustion modeling: DNS of Premixed V-flame, LES of lifted jet-flame, RANS of non premixed jet-flame J. of Turbulence, 5(4): 1-36.
  • L. Vervisch, B. Labégorre, J. Réveillon (2004) Hydrogen-sulphur oxy-flame analysis and single-step flame tabulated chemistry Fuel 83(4-5): 605-614.
  • J. Boulanger, L. Vervisch, J. Réveillon, S. Ghosal (2003) Effects of heat release in laminar diffusion flames lifted on round jets Combust. Flame, 134(4): 355-368.
  • L. Blin, A. Hadjadj, L. Vervisch, (2003) Large Eddy Simulation of turbulent flows in reversing systems J. of Turbulence, 4(1): 1-19.
  • O. Gicquel, L. Vervisch, G. Joncquet, B. Labegorre, N. Darabiha (2003) Combustion of residual steel gases: Laminar flame analysis and turbulent flamelet modeling, Fuel 82(8): 983 - 991.
  • P. Domingo, L. Vervisch, K.N.C. Bray (2002) Partially premixed flamelets in LES of nonpremixed turbulent combustion Combust. Theory and Modelling 6(4): 529-551.
  • J. Boulanger, L. Vervisch (2002) Diffusion edge-flame: Approximation of the flame tip Damköhler number Combust. Flame, 130(1/2): 1-14.
  • D. Veynante, L. Vervisch (2002) Turbulent Combustion Modeling Prog. Energ. Sci., 285(3): 193-266.
  • V. Favier, L. Vervisch (2001) Edge flames and partially premixed combustion in diffusion flame quenching Combust. Flame. 125 (1/2): 788-803.
  • S. Ghosal, L. Vervisch (2001) Stability diagram for lift-off and blowout of a round jet laminar diffusion flame Combust. Flame. 124(4): 646-655.
  • S. Ghosal, L. Vervisch (2000) Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation J. Fluid Mech. 415: 227-260.
  • J. Reveillon, L. Vervisch (2000) Accounting for spray vaporization in non-premixed turbulent combustion modeling: A Single Droplet Model (SDM) Combust. Flame 121(1/2): 75-90.
  • L. Vervisch, D. Veynante (2000) Interlinks between approaches for modeling turbulent flames Proc. Combust. Inst. 28: 175-183.
  • L. Vervisch (2000) Using numerics to help understand nonpremixed turbulent flames Proc. Combust. 28: 11-24.
  • L. Vervisch, T. Poinsot (1998) Direct numerical simulation of non-premixed turbulent combustion Annu. Rev. Fluid Mech. 30: 655-92.
  • J. Réveillon, L. Vervisch (1998) Subgrid-Scale Turbulent Micromixing: Dynamic Approach AIAA Journal 36 (3): 336-341.
  • V. Favier, L. Vervisch (1998) Investigating the effects of Edge-flames in liftoff in non-premixed turbulent combustion Proc. Combust. Inst. 26: 1239-1245.
  • L. Vervisch, J. Réveillon (1996) Dynamics of iso-concentration surfaces in weak shock turbulent mixing interaction AIAA Journal 34 (12): 2539-2544.
  • L. Vervisch, J. Réveillon, L., Guichard (1996) Recent developments in turbulent combustion modeling Journal Européen des Eléments Finis 5 (2): 161-196.
  • J. Réveillon, L. Vervisch (1996) Response of the dynamic model to heat release induced effects Phys. of Fluids 8(8): 2248-2250.
  • P. Domingo, L. Vervisch (1996) Triple flames and partially premixed combustion in autoignition of nonpremixed turbulent mixtures Proc. Combust. Inst. 26: 233-240.
  • G.R. Ruetsch, L. Vervisch, A. Linan (1995) Effects of heat release on triple flames Phys. Fluids 7(6): 1447-1454.
  • S. Mahalingam, J. H. Chen, L. Vervisch (1995) Finite-rate chemistry and transient effects in direct numerical simulations of turbulent non-premixed flames Combust. Flame 102(3): 285-297.
  • L. Vervisch, E. Bidaux, K.N.C. Bray, W. Kollmann (1995) Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches Phys. Fluids 7(10): 2496-2503.
  • L. Guichard, L. Vervisch, P. Domingo (1995) Two-dimensional weak-shock vortex interaction in a mixing zone AIAA Journal 33(10): 2539-2544.

Invited keynote lectures at international conferences

  • L. Vervisch (2023) Simulating turbulent flames and pollutants emission, Clean Air Conference, Lisbon, Portugal, June 25-29.
  • L. Vervisch, P. Domingo, G. Lodato (2022) Novel findings in turbulent flame brush thickness dynamics and in the application of machine learning to solve for soot, UKCTRF, Newcastle University, UK, Sept. 13-14.
  • L. Vervisch (2021) Turbulent reactive flow simulation, from physical modeling to machine learning, 2nd High-Fidelity Industrial LES/DNS Symposium, Sept. 22-24, online event.
  • L. Vervisch (2019) Turbulent Reactive Flow Simulation: From Physical Modelling to Machine Learning, Sixteenth International Conference on Flow Dynamics, Nov. 6-8, Sendai, Miyagi, Japan.
  • L. Vervisch (2019) Machine learning for turbulent flame simulation and hybrid stochastic/fixed-sectional approaches for solving population balance equations, International Workshop on: Clean Combustion Principle and Application, Sept. 25-27, Darmstadt, Germany.
  • L. Vervisch (2018) Recent developments in turbulent reacting flow modeling: Non-intertial particles, machine learning based deconvolution and highly turbulent flames. Invited plenary at International ERCOFTAC Symposium on Engineering Turbulence Modeling and Measurements, ETMM12, Sept. 26-28, Montpellier, France.
  • L. Vervisch, P. Domingo, G. Lodato (2018) Numerical simulation of flames and turbulent combustion modeling. Invited keynote lecture at XXIII Fluid Mechanics Conference (KKMP), Sept 9-12, Zawiercie, Poland.
  • L. Vervisch (2015) Simulation of turbulent flames: From high-performance computing to low-order models for process control, 15th International Conference on Numerical Combustion, Avignon, France, 19-22 April.
  • L. Vervisch (2012) Combustion, flames and burner design: Challenges and computing tools Invited keynote lecture at COMBURA'12, Combustion Research and Application, Maastricht, The Netherlands 3-4 Oct.
  • L. Vervisch (2012) Challenges and progress in turbulent combustion modeling Invited keynote lecture at 7th International Symposium on Turbulence, Heat and Mass Transfer, THMT, Palermo, Sicily, Italy 24-27 Sept.
  • L. Vervisch, V. Moureau, P. Domingo (2010) Turbulent combustion modeling: new approaches for highly refined simulations Invited keynote lecture at V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 Lisbon, Portugal,14-17 June.
  • L. Vervisch (2009) Scalar scaling in LES of turbulent combustion Invited keynote lecture at COCCFEA International Workshop on Combustion Simulation and Modelling, Imperial College London, 17-18 Sept., London, UK.
  • L. Vervisch, V. Moureau, P. Domingo, G. Lodato, D. Veynante (2009) Scalar fields subgrid scale energy in Large-Eddy Simulation of turbulent flames: Mesh quality criterion Invited introductory lecture at LESTAC09, Large-Eddy Simulation in Turbulence, Aeroacoustic and Combustion, Aug. 26-28, Marseille, France.
  • L. Vervisch, P. Domingo (2008) Large-Eddy Simulation of turbulent combustion, comparing scalar variances with measurements Invited keynote lecture at DNS and LES of Reactive Flows, Oct 22-24, Maastricht, Netherlands.
  • L. Vervisch, P. Domingo, V. Subramanian, G. Bonomeau (2008) Chemistry in Large-Eddy Simulation of turbulent flame Invited keynote lecture at The Combustion Institute, 20th Journées d’Etudes of the Belgian Section, May 6-8, Gent, Belgium.
  • L. Vervisch, P. Domingo (2008) Large-Eddy Simulation of turbulent flames Invited keynote lecture at LES in Science and Technology, COST P20 Conference, 21-22 April, Poznan, Poland.
  • L. Vervisch, G. Lodato, P. Domingo (2007) Reliability of Large-Eddy Simulation of turbulent flames Invited keynote lecture at Quality and Reliabiity of Large-Eddy Simulation, 24-26 October, Leuven, Belgium.
  • L. Vervisch, P. Domingo (2005) DNS and LES of turbulent premixed combustion: A FSD-PDF SGS closure Invited plenary at DLES6, Direct and Large Eddy Simulation, ERCOFTAC, Poitiers, Sept. 12-14, France.
  • L. Vervisch, P. Domingo (2005) DNS and LES of Turbulent Combustion Invited keynote lecture at Computational Fluid Dynamics in Chemical Reaction Engineering IV, Barga, June 19-24, Italy.
  • L. Vervisch (2005) Quality assessment of DNS of reacting flows Invited keynote lecture at the First Workshop on Quality Assessment of Unsteady Methods for Turbulent Combustion Prediction and Validation, Darmstadt - Seeheim, June 16-17, Germany.
  • L. Vervisch (2004) Linking DNS, LES, RANS and experiments Invited paper at the 7th Workshop on Turbulent Nonpremixed Flame, Chicago, 22-24 July, USA.
  • L. Vervisch (2004) LES of turbulent combustion systems in the light of combustion theory, experiments and DNS Invited keynote lecture at the International Workshop on Unsteady combustion, Transport Phenomena and Chemical Reaction in Technical Systems, Karlsruhe University, 8-9 July, Germany.
  • L. Vervisch, P. Domingo, R. Hauguel (2003) Turbulent combustion in the light of direct and large eddy simulation Invited plenary at Turbulent Shear Flow Phenomena-III, Sendai, 25-27 June, Japan.
  • L. Vervisch, P. Domingo (2002) Challenges in partially premixed turbulent combustion modeling Invited plenary at 2002 GAMM Conference (Gesellschaft für Angewandte Mathematik un Mechanik) in Augsburg, 25-28 March, Germany.
  • L. Vervisch, P. Domingo (2001) Large Eddy Simulation of partially premixed turbulent combustion Invited plenary at Symposium on turbulent mixing and combustion. IUTAM. Kingston, June 3-6, Canada.
  • L. Vervisch (2001) Challenges in turbulent combustion modeling Invited plenary at 2001 Joint International Combustion Symposium, Kauai, Sept. 10-12, USA.
  • L. Vervisch (2000) Using numerics to help understand nonpremixed turbulent flames Invited Topical Review at Twenty-Eighth Symposium (International) on combustion, Eidinburg, UK.
  • L. Vervisch (1999) DNS and LES of non-premixed turbulent combustion Invited paper at AICHE Annual Meeting, Oct. 31 - Nov. 5, Dallas, TX, USA.
  • L. Vervisch (1999) Numerical models for non-premixed turbulent combustion Invited plenary at 17th International Colloquium on the Dynamics of Explosions and Reactive Systems, July 25-30, Heidelberg, Germany.
  • L. Vervisch (1999) DNS to help understanding of non-premixed turbulent flames Invited plenary at Second AFOSR International Conference on DNS and LES, New Brunswick, N.J., June 7-9, USA.
  • L. Vervisch (1995) DNS for analysis of ignition of non premixed mixtures Invited paper at The combustion institute, Sezione Italiana, Naples, July 28, Italy.

Ph.D. Graduates

- (*) with INSA co-advisor / (**) external honorary advisor

  • Stéphane Mélen, « Modélisation de la combustion turbulente en régime supersonique », 1995.
  • Julien Réveillon, « Simulation dynamique des grandes structures appliquée aux flammes turbulentes non-prémélangées. », 1996.
  • Laurent Blin*, « Simulation des grandes échelles dans un inverseur de poussée », 1999.
  • Valérie Favier, « Contribution de la combustion partiellement prémélangée à la stabilisation des flammes turbulentes », 2000.
  • Joan Boulanger, « Extrémité des flammes de diffusion. Analyse asymptotique et simulation directe de la combustion partiellement prémélangée », 2002. (Thèse ayant remporté le Prix de la section Française du Combustion Institute, Prix Paul Lafitte.)
  • Marina Saveliera**, « Mathematical modeling of triple flame ring behavior », Swiss Federal Institute of Technology Zurich, 2003.
  • Cyrille Lesieur « Modélisation de la combustion turbulente non-prémélangée dans un brûleur à jets séparés, application à la stabilisation d’une oxy-flamme », 2003.
  • Raphaël Hauguel* « Flamme en V turbulente, Simulation numérique directe et modélisation de la combustion turbulente prémélangée », 2003.
  • Matthieu Rullaud, « Analyse et modélisation de la production de CO et Nox dans une chambre de combustion aéronautique », 2004.
  • Benoît Fiorina**, « Méthode FPI (Flame Prolongation of IMDL) appliquées aux brûleurs turbulents avec pertes thermiques », Ecole Centrale Paris, 2004.
  • Ganessan Subramanian* « Modélisation de l’auto-inflammation : Analyse des effets de la dilution par les gaz brûlés et des interactions avec la turbulence dédiée aux moteurs Diesel à charge homogène », 2005.
  • Sandra Payet* « Analyse de l’oxy-combustion en régime dilué par simulation des grandes échelles », 2007.
  • Erwin Georges* « Modélisation et simulation de l'auto-allumage de mélanges hydrocarbure/hydrogène dans un écoulement supersonique coaxial confiné d'air chaud », thèse en co-tutelle avec l’ONERA, 2007.
  • Jérémy Galpin*, « Modélisation LES de la combustion avec une prise en compte des effets de cinétique détaillée et en perspective d’application moteur », 2007.
  • Alexandre Naudin*, « Simulation des grandes échelles de la combustion turbulente avec chimie détaillée tabulée », 2008.
  • Guido Lodato*, « Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents. Modélisation de sous-maille pour la turbulence en région de proche paroi », 2008.
  • Vallinayagam Pillai Subramanian*, « Numerical simulation of forced ignition using LES coupled with a tabulated detailed chemistry approach », 2010.
  • Guillaume Godel*, « Modélisation de sous-maille de la combustion turbulente Développement d’outils pour la prédiction de la pollution dans une chambre aéronautique », 2010.
  • Guillaume Lecocq*, « Approches hybrides combinant chimie complexe, description statistique et densité de surface de flamme pour la simulation aux grandes échelles de l’auto-inflammation, l’allumage par bougie et la flamme de prémélange dans les moteurs à allumage commande », 2010.
  • Eric Albin*, « Contribution à la modélisation numérique des flammes turbulentes : comparaisons DNS-EEM-Expériences », 2010.
  • Cindy Merlin*, « Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d’une cavité », 2011.
  • Nicolas Enjalbert*, « Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés », 2011.
  • Guillaume Lodier*, « Analyse de l'initiation et du développement de l'auto-inflammation après compression rapide d'un mélange turbulent réactif - Application au contexte CAI/HCCI », 2013.
  • Suresh Kumar Nambully*, "Accounting for differential diffusion effects in LES of turbulent combustion using a filtered laminar flame PDF approach. Application to stratified burners", 2013.
  • François Pecquery*, "Développement d’un modèle numérique de prédiction des émissions d’oxydes d’azote pour la simulation aux grandes échelles de chambres de combustion aéronautiques", 2013.
  • Jonathan Vahé, "Une approche multifractale pour la modélisation du micro-mélange à grand nombre de Schmidt", 2014.
  • Abdullah Abou-Taouk**, "Optimization of Chemical Kinetics and Numerical Simulations of Industrial Gas Turbine Burners", Chalmers University of Technology, 2014.
  • Benjamin Farcy*, "Analyse des mécanismes de destruction non-catalytique des Oxydes d'Azote (DeN0x) et application à la simulation aux grandes échelles (LES) d'un incinérateur", 2015.
  • Zeinab Pouransari**, "Numerical studies of turbulent flames in wall-jet flows", KTH Stockholm, 2015.
  • Nicolas Jaouen*, "An automated approach to derive and optimise reduced chemical mechanisms for turbulent combustion", 2017.
  • Dorian Midou*, "Optimisation d'une lance de charbon pulvérisé", 2017.
  • Kevin Bioche*, "Analyse de la propagation d'une flamme méthane/air dans un canal étroit bi-dimensionnel avec prise en compte des couplages thermiques", 2018.
  • Arne Scholtissek**, "Flamelet modeling in composition space for premixed and non-premixed combustion", TU Darmstadt, 2018.
  • Alexandre Bouaniche*, "A hybrid stochastic-sectional method for the simulation of soot particle size distributions", 2019.
  • Andrea Seltz*, "Application of deep learning to turbulent combustion modeling of real jet fuel for the numerical prediction of particulate emissions", 2020.
  • Niccolò Tonicello* , "High-order spectral element methods for the simulation of compressible turbulent flows", 2021.
  • Mohamed Chemak*, "Large Eddy Simulation of Liquid-Fuel Film/Sooting-Flame Interaction in Wall Bounded Turbulent Flows", 2022.
  • Hassan Tofaili*, "Revisiting deflagration-to-detonation transition in the context of carbon-free energy", 2022.
  • Camille Barnaud*, "Méthode avancée de prototypage virtuel pour le dimensionnement d’un ensemble lance-tuyère avec prise en compte des transferts thermiques", 2022.
  • Huu-Tri Nguyen*, "Numerical Modeling and simulation of steel gases combustion", 2022.