|
|
| Line 1: |
Line 1: |
| − | {{Welcome|Bossenne|Eurielle Bossennec}}
| + | == Motivation == |
| | + | H-Allegro uses the compressible and reactive Navier-Stokes equations in order to solve two-phase combustion. It also takes into account a simplified chemistry of the reaction and the propagation of acoustic waves. |
| | | | |
| − | | + | * <math> |
| − | <i>H-Allegro uses the Navier-Stokes equations to solve combustion.</i>
| + | \dfrac{\partial{\rho}}{\partial{t}}+\dfrac{\partial{{\rho}U_{j}}}{\partial{x_{j}}}=0 |
| − | | + | |
| − | <math> | + | |
| − | (1) \dfrac{\partial{\rho}}{\partial{t}}+\dfrac{\partial{{\rho}U_{j}}}{\partial{x_{j}}}=0
| + | |
| | </math> | | </math> |
| | | | |
| − | <math> | + | * <math> |
| − | (2) \dfrac{\partial{{\rho}U_{i}}}{\partial{t}}+\dfrac{\partial{{\rho}}U_{i}U_{j}}{\partial{x_{j}}}+\dfrac{\partial{P}}{\partial{x_{i}}}=\dfrac{\partial{\tau_{ij}}}{\partial{x_{j}}}+S_{i}
| + | \dfrac{\partial{{\rho}U_{i}}}{\partial{t}}+\dfrac{\partial{{\rho}}U_{i}U_{j}}{\partial{x_{j}}}+\dfrac{\partial{P}}{\partial{x_{i}}}=\dfrac{\partial{\tau_{ij}}}{\partial{x_{j}}}+S_{i} |
| | </math> | | </math> |
| | | | |
| − | <math> | + | * <math> |
| − | (3) \dfrac{\partial{{\rho}E}}{\partial{t}}+\dfrac{\partial{(P+{\rho}E)}U_{j}}{\partial{x_{j}}}=\dfrac{\partial{q_{j}}}{\partial{x_{j}}}+\dfrac{\partial{\tau_{ij}U_{i}}}{\partial{x_{j}}}+S_{5}
| + | \dfrac{\partial{{\rho}E}}{\partial{t}}+\dfrac{\partial{(P+{\rho}E)}U_{j}}{\partial{x_{j}}}=\dfrac{\partial{q_{j}}}{\partial{x_{j}}}+\dfrac{\partial{\tau_{ij}U_{i}}}{\partial{x_{j}}}+S_{5} |
| | </math> | | </math> |
| | | | |
| − | <math> | + | * <math> |
| − | (4) \dfrac{\partial{{\rho}Y_{k}}}{\partial{t}}+\dfrac{\partial{{\rho}Y_{k}U_{j}}}{\partial{x_{j}}}=\dfrac{\partial{q_{j}^{k}}}{\partial{x_{j}}}+S_{k}
| + | \dfrac{\partial{{\rho}Y_{k}}}{\partial{t}}+\dfrac{\partial{{\rho}Y_{k}U_{j}}}{\partial{x_{j}}}=\dfrac{\partial{q_{j}^{k}}}{\partial{x_{j}}}+S_{k} |
| | </math> | | </math> |
Revision as of 14:55, 6 June 2012
Motivation
H-Allegro uses the compressible and reactive Navier-Stokes equations in order to solve two-phase combustion. It also takes into account a simplified chemistry of the reaction and the propagation of acoustic waves.
-
-
-
-